Skip to main content
Log in

Solidification behaviour of ceramic particle reinforced Al-alloy matrices

  • HTC2009
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Novel metal matrix composites have been produced by cast production route. TiC and WC ceramic reinforcing particles have been successfully introduced into Al 6060, Al 319, Al 356, Al–7Si–5Mg, Al–20Cu and Al 2007 alloys. Refined grain structure and various intermetallic phase formation have been observed. Particle–melt and particle–solidification front interactions, solidification sequence and particle–matrix interfacial characteristics have been examined by means of metallography, SEM examination and EDX analysis. Particle distribution, intermetallic phase formation and location and grain structure are discussed in terms of ceramic-melt wetting characteristics, alloying element interfacial segregation and particle–solidification front thermal behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lloyd DJ (1999) Int Mater Rev 39:1

    Google Scholar 

  2. Rohatgi PK, Asthana R, Das S (1986) Int Mater Rev 31:115

    CAS  Google Scholar 

  3. Mortensen A, Jin I (1992) Int Mater Rev 37:101

    CAS  Google Scholar 

  4. Rohatgi PK, Ray S, Asthana R, Narendranath CS (1993) Mater Sci Eng A162:163

    CAS  Google Scholar 

  5. Asthana R, Tewari SN (1993) Compos Manuf 4(1):3

    Article  CAS  Google Scholar 

  6. Howe JM (1993) Int Mater Rev 38(5):233

    CAS  Google Scholar 

  7. Nakae H, Fujii H, Shinohara T, Zhao BR (1993) In: Miravete A (ed) Proceedings of the ninth international conference on composite materials, pp 255–262

  8. Wu Y, Zhang J, Lavernia EJ (1994) Mater Trans 25B:135

    CAS  Google Scholar 

  9. Kaptay G (1996) Mater Sci Forum 215–216:459

    Article  Google Scholar 

  10. Kaptay G (2001) In: Pandey AB, Kendig KL, Watson TJ (eds) Affordable metal–matrix composites for high performance applications. TMS, ISBN: 0-87339-500-X, pp 71–99

  11. Kaptay G (2005) J Mater Sci 40:2125. doi:10.1007/s10853-005-1902-2

    Article  CAS  ADS  Google Scholar 

  12. Kennedy AR, Karantzalis AE (1999) Mater Sci Eng A264(1–2):122

    CAS  Google Scholar 

  13. Karantzalis AE, Wyatt S, Kennedy AR (1997) Mater Sci Eng A237(2):200

    CAS  Google Scholar 

  14. Zubko AM, Lobanov VG, Nikonova VV (1973) Sov Phys Crystallogr 18(2):239

    Google Scholar 

  15. Surrapa MK, Rohatgi PK (1981) J Mater Sci 16(2):562. doi:10.1007/BF00738658

    Article  ADS  Google Scholar 

  16. Rohatgi PK, Pasciak K, Narendranath CS (1994) J Mater Sci 29:5357. doi:10.1007/BF01171548

    Article  CAS  ADS  Google Scholar 

  17. Hadji L (2001) Phys Rev E 64:051502-1-6

    Article  ADS  Google Scholar 

  18. Garvin JW, Udaykumar HS (2004) J Cryst Growth 267:724

    Article  CAS  ADS  Google Scholar 

  19. Kaptay G (2001) Metall Mater Trans A 32A:993

    Article  CAS  ADS  Google Scholar 

  20. Kaptay G (2002) Mater Trans 33A:1869

    CAS  Google Scholar 

  21. Ohta H, Suito H (2006) ISIJ Int 46:22

    Article  CAS  Google Scholar 

  22. Ohta H, Suito H (2006) ISIJ Int 46:472

    Article  CAS  Google Scholar 

  23. Schaffer PL, Miller DN, Dahle AK (2007) Scripta Mater 57:1129

    Article  CAS  Google Scholar 

  24. Shangguan D, Ahuja S, Stefanescu DM (1992) Metall Trans A 23:669

    Article  Google Scholar 

  25. Ulmann DR, Chalmers B, Jackson KA (1964) J Appl Phys 35(10):2986

    Article  ADS  Google Scholar 

  26. Cisse J, Bolling GF (1971) J Cryst Growth 10:67

    Article  CAS  ADS  Google Scholar 

  27. Cisse J, Bolling GF (1971) J Cryst Growth 11:25

    Article  CAS  ADS  Google Scholar 

  28. Bolling GF, Cisse J (1971) J Cryst Growth 10:55–66

    Article  Google Scholar 

  29. Chernov AA, Temkin DE, Melnikova AM (1976) Sov Phys Crystallogr 21(4):369

    Google Scholar 

  30. Stefanescu DM, Dhindaw BK, Kacar SA, Moitra A (1988) Metall Trans A 19:2847

    Article  Google Scholar 

  31. Stefanescu DM, Phalniker RV, Pang H, Ahuja S, Dhindaw BK (1995) ISIJ Int 35(6):700

    Article  CAS  Google Scholar 

  32. Han Q, Hunt JD (1995) ISIJ Int 35(6):693

    Article  CAS  Google Scholar 

  33. Juretzko FR, Dhindaw BK, Stefanescu DM, Sen S, Curreri PA (1998) Metall Mater Trans A 29A:1691

    Article  CAS  Google Scholar 

  34. Shibata H, Yin H, Yoshinaga S, Emi T, Suzuki M (1998) ISIJ Int 38(2):149

    Article  CAS  Google Scholar 

  35. Kimura S, Nabeshima Y, Nakajima K, Mizoguchi S (2000) Metall Mater Trans B 31B:1013

    Article  CAS  ADS  Google Scholar 

  36. Catalina AV, Mukherjee S, Stefanescu DM (2000) Metall Mater Trans A 31A:2559

    Article  CAS  Google Scholar 

  37. Mukherjee S, Stefanescu DM (2004) Metall Mater Trans 35A:613

    Article  CAS  Google Scholar 

  38. Mukherjee S, Sharif MAR, Stefanescu DM (2004) Metall Mater Trans 35A:623

    Article  CAS  Google Scholar 

  39. Youssef YM, Dashwood RJ, Lee PD (2005) Composites A 36:747

    Article  Google Scholar 

  40. Garvin JW, Yang Y, Udaykumar HS (2007) Int J Heat Mass Transfer 50:2952

    Article  Google Scholar 

  41. Garvin JW, Yang Y, Udaykumar HS (2007) Int J Heat Mass Transfer 50:2969

    Article  Google Scholar 

  42. Stefanescu DM (2007) Trans Ind Inst Metals 60(2–3):79

    CAS  Google Scholar 

  43. Stefanescu DM, Dhindaw BK (1988) In: ASM metals handbook, vol 15 casting. ASM International, ISBN: 0-87170-021-2, pp 315–326

  44. Asthana R, Tewari SN (1993) J Mater Sci 28:5414. doi:10.1007/BF00367810

    Article  CAS  ADS  Google Scholar 

  45. Asthana R (1998) J Mater Sci 33:1679. doi:10.1023/A:1004308027679

    Article  CAS  ADS  Google Scholar 

  46. Mussert KM, Vellinga WP, Bakker A, Van Der Zwaag S (2002) J Mater Sci 37:789. doi:10.1023/A:1013896032331

    Article  CAS  Google Scholar 

  47. Hu C, Baker TN (1997) J Mater Sci 32:5047. doi:10.1023/A:1018653030270

    Article  CAS  Google Scholar 

  48. Candan E, Atkinson HV, Jones H (2000) J Mater Sci 35:4955. doi:10.1023/A:1004838610567

    Article  CAS  Google Scholar 

  49. Lopez VH, Kennedy AR (2005) J Mater Sci 40:2453. doi:10.1007/s10853-005-1974-z

    Article  CAS  ADS  Google Scholar 

  50. Ureina A, Rodrigo P, Gil L, Escalera MD, Baldonero JL (2001) J Mater Sci 36:419. doi:10.1023/A:1004880629720

    Article  CAS  Google Scholar 

  51. Hadianfard MJ, Ma Y-W (2000) J Mater Sci 35:1715. doi:10.1023/A:1004720300774

    Article  CAS  Google Scholar 

  52. Khan TI, Miller S (2001) J Mater Sci 36:1307. doi:10.1023/A:1004870917957

    Article  CAS  Google Scholar 

  53. Gomez De Salazar JM, Barrena MI (2002) J Mater Sci 37:1497. doi:10.1023/A:1014967324577

    Article  CAS  Google Scholar 

  54. Zulfia A, Hand RJ (2002) J Mater Sci 37:955. doi:10.1023/A:1014395730170

    Article  CAS  Google Scholar 

  55. Contreras A, Angeles-Chávez C, Flores O, Perez R (2007) Mater Character 58:685

    Article  CAS  Google Scholar 

  56. Albiter A, Leon CA, Drew RAL, Bedolla E (2000) Mater Sci Eng A289:109

    CAS  Google Scholar 

  57. Selcuk C, Kennedy AR (2006) Mater Lett 60:3364

    Article  CAS  Google Scholar 

  58. Shyu RF, Ho CT (2006) J Mater Process Technol 171:411

    Article  CAS  Google Scholar 

  59. Premkumar MK, Chu MG (1995) Mater Sci Eng A202:172

    CAS  Google Scholar 

  60. Khatri S, Koczak M (1993) Mater Sci Eng A162:153

    CAS  Google Scholar 

  61. Sahoo P, Koczak M (1991) Mater Sci Eng A144:37

    CAS  Google Scholar 

  62. Eustathopoulos N, Nicolas MG, Drevet B (1999) In: Chan RW (ed) Wettability at high temperatures. Pergamon Materials Series, ISBN: 0-08-042146-6, p 300

  63. Naidich JV (1981) Prog Surface Membr Sci 14:353

    CAS  Google Scholar 

  64. Frumin N, Frage N, Polak M, Dariel MP (1997) Scripta Mater 37:1263

    Article  CAS  Google Scholar 

  65. Froumin N, Frage N, Polak M, Dariel MP (2000) Acta Mater 48:1435

    Article  CAS  Google Scholar 

  66. Contreras A, Bedolla E, Perez R (2004) Acta Mater 52:985

    Article  CAS  Google Scholar 

  67. Lopez VH, Kennedy AR (2006) J Colloid Interface Sci 298:356

    Article  CAS  PubMed  Google Scholar 

  68. Ovono D, Guillot I, Massinon D (2006) Scripta Mater 55:259

    Article  CAS  Google Scholar 

  69. Rhee SK (1970) J Am Ceram Soc 53(7):386

    Article  CAS  Google Scholar 

  70. Boghosian S, Goda A, Mediaas H, Ravlo W, Østvold T (1991) Acta Chem Scan Ser A45:145

    Article  Google Scholar 

  71. Mediaas H, Vindstad JF, Østvold T (1997) Acta Chem Scan Ser A51:504

    Google Scholar 

  72. Fjellstedt J, Jarforfs AEW (2005) Mater Sci Eng A 413–414:527

    Google Scholar 

  73. Fjellstedt J, Jarforfs AEW, Svedsen L (1999) J Alloys Comp 283:192

    Article  CAS  Google Scholar 

  74. Mahallaway NE, Taha MA, Jarfors AEW, Fredriksson H (1992) J Alloys Comp 292:221

    Article  Google Scholar 

  75. Lopez VH, Scoles A, Kennedy AR (2003) Mater Sci Eng A356:316

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Karantzalis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karantzalis, A.E., Lekatou, A., Georgatis, E. et al. Solidification behaviour of ceramic particle reinforced Al-alloy matrices. J Mater Sci 45, 2165–2173 (2010). https://doi.org/10.1007/s10853-009-4055-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-4055-x

Keywords

Navigation