Skip to main content
Log in

A Novel Cast Nanocomposite with Enhanced Fatigue Life

  • Liquid Metal Processing of Al- and Mg-based Composite Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Cast metal matrix nanocomposites (C-MMNCs), commonly made of light-weight aluminum or magnesium matrices, usually exhibit inferior fatigue behavior as compared to their monolithic alloys commonly owing to poor ductility and low toughness values caused by the addition of reinforcing nanoparticles. Strong inter-particle forces such as van der Waals, casting induced porosities, inadequate dispersibility of nanometric particles, and insufficient wetting in the reinforcement-matrix interfacial regions are of the key existing problems. The present study is aimed to deal with the high-cycle fatigue behavior of a novel ultrasonically stir-cast SiO2/A356 nanocomposite wherein a C-MMNC with simultaneously enhanced static and fatigue properties was developed. Due to good ultrasonic dispersion and distribution of nanometric particles, the developed composite materials exhibited higher ductility values, being a dominant parameter to dictate the fatigue response. While the addition of reinforcing particles to a given melt usually leads to an inferior fatigue response, the obtained results revealed that proper ultrasonication can effectively reduce porosities, de-agglomerate solid reinforcements, wet and disperse them uniformly in the matrix and enhance fatigue performance significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. S. Suresh, Fundamentals of Metal-Matrix Composites (Elsevier, 2013).

    Google Scholar 

  2. M. Shayan, B. Eghbali, and B. Niroumand, Mater. Sci. Eng. A 756, 484. (2019).

    Article  Google Scholar 

  3. L. Ceschini, A. Dahle, M. Gupta, A.E.W. Jarfors, S. Jayalakshmi, A. Morri, F. Rotundo, S. Toschi and R.A. Singh, in: Aluminum and Magnesium Metal Matrix Nanocomposites, (Springer, 2017), pp. 1–17.

  4. M. Malaki, W. Xu, A.K. Kasar, P.L. Menezes, H. Dieringa, R.S. Varma, and M. Gupta, Metals 9, 330. (2019).

    Article  Google Scholar 

  5. G. Liu, P. Blake, and S. Ji, J. Alloys Compd. 809, 151795. https://doi.org/10.1016/j.jallcom.2019.151795 (2019).

    Article  Google Scholar 

  6. T.S. Srivatsan, C. Godbole, M. Paramsothy, and M. Gupta, Mater. Sci. Eng. A 532, 196. (2012).

    Article  Google Scholar 

  7. L.-Y. Chen, J.-Q. Xu, H. Choi, M. Pozuelo, X. Ma, S. Bhowmick, J.-M. Yang, S. Mathaudhu, and X.-C. Li, Nature 528, 539. (2015).

    Article  Google Scholar 

  8. J. Hashim, L. Looney, and M.S.J. Hashmi, J. Mater. Process. Technol. 119, 324. https://doi.org/10.1016/S0924-0136(01)00975-X (2001).

    Article  Google Scholar 

  9. G. Liu, M. Karim, S. Wang, D. Eskin, and B. McKay, J. Mater. Res. Technol. 18, 2384. https://doi.org/10.1016/j.jmrt.2022.03.132 (2022).

    Article  Google Scholar 

  10. G.W. Liu, M.L. Muolo, F. Valenza, and A. Passerone, Ceram. Int. 36, 1177. https://doi.org/10.1016/j.ceramint.2010.01.001 (2010).

    Article  Google Scholar 

  11. M. Dehnavi, B. Niroumand, F. Ashrafizadeh, and P. Rohatgi, Mater. Sci. Eng. A 617, 73. (2014).

    Article  Google Scholar 

  12. S. Pourhosseini, H. Beygi, and S.A. Sajjadi, Mater. Sci. Technol. 34, 145. https://doi.org/10.1080/02670836.2017.1366708 (2018).

    Article  Google Scholar 

  13. C.S. Goh, J. Wei, L.C. Lee, and M. Gupta, Compos. Sci. Technol. 68, 1432. https://doi.org/10.1016/j.compscitech.2007.10.057 (2008).

    Article  Google Scholar 

  14. S.E. Shin and D.H. Bae, Compos. Part B Eng. 134, 61. https://doi.org/10.1016/j.compositesb.2017.09.034 (2018).

    Article  Google Scholar 

  15. J.N. Hall, J. Wayne Jones, and A.K. Sachdev, Mater. Sci. Eng. A 183, 69. https://doi.org/10.1016/0921-5093(94)90891-5 (1994).

    Article  Google Scholar 

  16. N. Chawla, J.W. Jones, C. Andres, and J.E. Allison, Metall. and Mater. Trans. A. 29, 2843. https://doi.org/10.1007/s11661-998-0325-5 (1998).

    Article  Google Scholar 

  17. Z. Chen and K. Tokaji, Mater. Lett. 58, 2314. (2004).

    Article  Google Scholar 

  18. J. Xia, J.J. Lewandowski, and M.A. Willard, Mater. Sci. Eng. A 770, 138518. https://doi.org/10.1016/j.msea.2019.138518 (2020).

    Article  Google Scholar 

  19. Z. Peng and L. Fuguo, Rare Met Mater. Eng. 39, 1525. https://doi.org/10.1016/S1875-5372(10)60123-3 (2010).

    Article  Google Scholar 

  20. M. Malaki, A. Fadaei Tehrani, B. Niroumand, and M. Gupta, Metals 11, 1034. (2021).

    Article  Google Scholar 

  21. A. Abdullah, M. Malaki, and E. Baghizadeh, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 226, 681. (2012).

    Article  Google Scholar 

  22. G.I. Eskin and D.G. Eskin, Ultrasonic Treatment of Light Alloy Melts (CRC Press, 2015).

    Google Scholar 

  23. A. Abdullah, A. Pak, M.M. Abdullah, A. Shahidi, and M. Malaki, Electron. Mater. Lett. 10, 37. (2014).

    Article  Google Scholar 

  24. P.S. Hampa, M.R. Razfar, M. Malaki, and A. Maleki, Trans. Indian Inst. Met. 68, 43. (2015).

    Article  Google Scholar 

  25. A. Abdullah, M. Malaki, and A. Eskandari, Mater. Des. 38, 7. (2012).

    Article  Google Scholar 

  26. M. Malaki, A. Fadaei Tehrani, B. Niroumand, and A. Abdullah, Metals 11, 2004. (2021).

    Article  Google Scholar 

  27. ASTM E8, Standard test methods for tension testing of metallic materials, USA, 2016.

  28. ASTM E9, Standard test methods of compression testing of metallic materials at room temperature, USA, 2019.

  29. ISO 1143:2021, Metallic materials - rotating bar bending fatigue testing, USA, 2010.

  30. R.I. Stephens, A. Fatemi, R.R. Stephens, and H.O. Fuchs, Metal Fatigue in Engineering (Wiley, 2000).

    Google Scholar 

  31. A. Jabbari, H. Delavar, and M. Sedighi, Mech. Mater. 142, 103278. (2020).

    Article  Google Scholar 

  32. A.R. Vaidya and J.J. Lewandowski, Mater. Sci. Eng. A 220, 85. (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Massoud Malaki or Alireza Fadaei Tehrani.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 154 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malaki, M., Tehrani, A.F. & Niroumand, B. A Novel Cast Nanocomposite with Enhanced Fatigue Life. JOM 75, 145–154 (2023). https://doi.org/10.1007/s11837-022-05473-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05473-z

Navigation