Skip to main content
Log in

Microstructure and Mechanical Properties of AlSi10Mg/NbC Composite Produced by Laser-Based Powder Bed Fusion (L-PBF) Process

  • Liquid Metal Processing of Al- and Mg-based Composite Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

AlSi10Mg metal matrix composites with varying weight percentages (wt.%) of niobium carbide (NbC: 0, 3 and 6 wt.%) were produced utilizing a laser-based powder bed fusion process in three printing orientations (0°, 45° and 90°) to improve the mechanical properties of the composite. The effect of NbC in AlSi10Mg on reflectance, densification, microstructure, wear resistance, micro-hardness, tensile and compression behavior were examined. The reflectance of AlSi10Mg powder was reduced to 26.94% with the addition of 6 wt.% NbC. Furthermore, the addition of 6 wt.% NbC in AlSi10Mg increased the relative density (ρR) to 2.59%. The average grain size of all printed samples was ≤ 10 µm. The wear rate of the composite was reduced to 6.32% against EN-31 and 32.6% against SiC counter body at 00 printing orientation with 6 wt.% NbC. The mechanical properties of the AlSi10Mg/NbC composite were enhanced, including micro-hardness (167 HV0.5 at 6 wt.%), ultimate tensile strength (393 MPa at 3 wt.%) and compressive strength (851 MPa at 6 wt.%). However, the formation of intermetallic compounds reduces tensile strength over 3 wt.% NbC. The printing orientation also affected the composite's mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The raw or processed data required to reproduce these findings cannot be shared as the data also form part of ongoing work.

References

  1. T.D. Ngo, A. Kashani, G. Imbalzano, K.T.Q. Nguyen and D. Hui, Compos. B Eng. 143, 172 (2018).

    Article  Google Scholar 

  2. E.O. Olakanmi, R.F. Cochrane and K.W. Dalgarno, Prog. Mater Sci. 74, 401 (2015).

    Article  Google Scholar 

  3. B.H. Jared, M.A. Aguilo, L.L. Beghini, B.L. Boyce, B.W. Clark, A. Cook, B.J. Kaehr and J. Robbins, Scripta Mater. 135, 141 (2017).

    Article  Google Scholar 

  4. T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De and W. Zhang, Prog. Mater Sci. 92, 112 (2018).

    Article  Google Scholar 

  5. W.H. Yu, S.L. Sing, C.K. Chua, C.N. Kuo and X.L. Tian, Prog. Mater Sci. 104, 330 (2019).

    Article  Google Scholar 

  6. P. Wang, J. Eckert, K. Prashanth, M. Wu, I. Kaban, L. Xi and S. Scudino, Trans. Nonferrous Metals Soc. China 30, 2001 (2020).

    Article  Google Scholar 

  7. C. Gao, W. Wu, J. Shi, Z. Xiao and A.H. Akbarzadeh, Addit. Manuf. 34, 101378 (2020).

    Google Scholar 

  8. S. Bai, H.J. Lee and J. Liu, Appl. Sci. 10, 3055 (2020).

    Article  Google Scholar 

  9. T.B. Sercombe and X. Li, Mater. Technol. 31, 1 (2016).

    Article  Google Scholar 

  10. D.K. Das, P.C. Mishra, S. Singh and R.K. Thakur, Int. J. Mech. Mater. Eng. 9, 1 (2014).

    Article  Google Scholar 

  11. D. Gu, Y.-C. Hagedorn, W. Meiners, K. Wissenbach and R. Poprawe, Compos. Sci. Technol. 71, 1612 (2011).

    Article  Google Scholar 

  12. R. Raj Mohan, R. Venkatraman, S. Raghuraman, P.M. Kumar, M.L. Rinawa, R. Subbiah, B. Arulmurugan and S. Rajkumar, Scanning 2022, 1 (2022).

    Article  Google Scholar 

  13. T. Satish Kumar, G. Suganya Priyadharshini, S. Shalini, K. Krishna Kumar and R. Subramanian, Trans. Indian Inst. Metals 72, 1593 (2019).

    Article  Google Scholar 

  14. P.W. Muchiri, V.M. Mwalukuku, K.K. Korir, G.O. Amolo and N.W. Makau, Mater. Chem. Phys. 229, 489 (2019).

    Article  Google Scholar 

  15. M. Cuppari and S. Santos, Metals 6, 250 (2016).

    Article  Google Scholar 

  16. M. Jalaly, F.J. Gotor and M.J. Sayagués, Int. J. Refract Metal Hard Mater. 79, 177 (2019).

    Article  Google Scholar 

  17. E.G. Il, A.S. Parshakov, Y.A. Teterin, K.I. Maslakov and A.Y. Teterin, Inorg. Mater. 56, 467 (2020).

    Google Scholar 

  18. L. Xi, P. Wang, K.G. Prashanth, H. Li, H.V. Prykhodko, S. Scudino and I. Kaban, J. Alloy. Compd. 786, 551 (2019).

    Article  Google Scholar 

  19. T. Minasyan and I. Hussainova, Materials 15, 2467 (2022).

    Article  Google Scholar 

  20. D.N. Travessa, M.J. Silva and K.R. Cardoso, Metall. Mater. Trans. B. 48, 1754 (2017).

    Article  Google Scholar 

  21. T. Ye, Y. Xu and J. Ren, Mater. Sci. Eng., A 753, 146 (2019).

    Article  Google Scholar 

  22. X.J. Wang, N.Z. Wang, L.Y. Wang, X.S. Hu, K. Wu, Y.Q. Wang and Y.D. Huang, Mater. Des. 57, 638 (2014).

    Article  Google Scholar 

  23. J.G. Santos Macías, T. Douillard, L. Zhao, E. Maire, G. Pyka and A. Simar, Acta Mater. 201, 231 (2020).

    Article  Google Scholar 

  24. E. Louvis, P. Fox and C.J. Sutcliffe, J. Mater. Process. Technol. 211, 275 (2011).

    Article  Google Scholar 

  25. M.A. Balbaa, A. Ghasemi, E. Fereiduni, M.A. Elbestawi, S.D. Jadhav and J.-P. Kruth, Addit. Manuf. 37, 101630 (2021).

    Google Scholar 

  26. S.Y. Zhou, Z.Y. Wang, Y. Su, H. Wang, G. Liu, T.T. Song and M. Yan, JOM 72, 3693 (2020).

    Article  Google Scholar 

  27. G. Xue, L. Ke, H. Liao, C. Chen and H. Zhu, J. Alloy. Compd. 845, 156260 (2020).

    Article  Google Scholar 

  28. R. M. Radhakrishnan, V. Ramamoorthi and R. Srinivasan, Procee. Inst. Mech. Eng., Part E: J. Process Mech. Eng., 095440892110627 (2021)

  29. H. Andersson, J. Örtegren, R. Zhang, M. Grauers and H. Olin, Addit. Manuf. 40, 101925 (2021).

    Google Scholar 

  30. Y.H. Zhao and Y.T. Zhu, Rev. Adv. Mater. Sci. 48, 52 (2017).

    Google Scholar 

  31. D. Stathokostopoulos, A. Teknetzi, E. Tarani, D. Karfaridis, K. Chrissafis, E. Hatzikraniotis and G. Vourlias, Results Mater. 13, 100252 (2022).

    Article  Google Scholar 

  32. Y. Kozhakhmetov, M. Skakov, W. Wieleba, K. Sherzod and N. Mukhamedova, AIMS Mater. Sci. 7, 182 (2020).

    Article  Google Scholar 

  33. A. Almeida, P. Petrov, I. Nogueira and R. Vilar, Mater. Sci. Eng., A 303, 273 (2001).

    Article  Google Scholar 

  34. D. Chung, M. Enoki and T. Kishi, Sci. Technol. Adv. Mater. 3, 129 (2002).

    Article  Google Scholar 

  35. I. Papadimitriou, C. Utton, A. Scott and P. Tsakiropoulos, Metall. Mater. Trans. A. 46, 566 (2015).

    Article  Google Scholar 

  36. M. Rodríguez-Reyes, M.I. Pech-Canul, J.C. Rendón-Angeles and J. López-Cuevas, Compos. Sci. Technol. 66, 1056 (2006).

    Article  Google Scholar 

  37. ASTM E112, Astm E112–10 96, 1 (2010)

  38. Z. Wang, L. Zhuo, E. Yin and Z. Zhao, Mater. Sci. Eng., A 808, 140864 (2021).

    Article  Google Scholar 

  39. L. Hitzler, S. Hafenstein, F. Mendez Martin, H. Clemens, E. Sert, A. Öchsner, M. Merkel and E. Werner, Materials 13, 720 (2020).

    Article  Google Scholar 

  40. P.L. Schaffer, D.N. Miller and A.K. Dahle, Scripta Mater. 57, 1129 (2007).

    Article  Google Scholar 

  41. J. Zhao, M. Easton, M. Qian, M. Leary and M. Brandt, Mater. Sci. Eng., A 729, 76 (2018).

    Article  Google Scholar 

  42. S. Baskaran, V. Anandakrishnan and M. Duraiselvam, Mater. Des. 60, 184 (2014).

    Article  Google Scholar 

  43. Y. Sahin, Mater. Des. 24, 95 (2003).

    Article  Google Scholar 

  44. J.L. Lu, X. Lin, H.L. Liao, N. Kang, W.D. Huang and C. Coddet, Opt. Laser Technol. 129, 106277 (2020).

    Article  Google Scholar 

  45. E. Sert, L.H.S. Hafenstein and M.M.E. Werner, Prog. Addit. Manuf. 5, 305 (2020).

    Article  Google Scholar 

  46. M. Sambathkumar, P. Navaneethakrishnan, K. Ponappa and K.S.K. Sasikumar, Latin Am. J. Solids Struct. 7075, 243 (2017).

    Article  Google Scholar 

  47. R.K. Bhushan and S. Kumar, J. Mater. Eng. Perform. 20, 317 (2011).

    Article  Google Scholar 

  48. L.C. Araújo, A.H.G. Gabriel, E.B. da Fonseca, J.A. Avila, A.L. Jardini, R. Seno Junior and É.S.N. Lopes, Int. J. Mech. Sci. 213, 106868 (2022).

    Article  Google Scholar 

  49. J. Chen, W. Hou, X. Wang, S. Chu and Z. Yang, Chin. J. Aeronaut. 33, 2043 (2020).

    Article  Google Scholar 

  50. Y. Li, D. Gu, H. Zhang and L. Xi, Chin. J. Mech. Eng. 33, 33 (2020).

    Article  Google Scholar 

  51. S. Katani, S. Ziaei-Rad, N. Nouri, N. Saeidi, J. Kadkhodapour, N. Torabian and S. Schmauder, Metallogr. Microstruct., Anal. 2, 156 (2013).

    Article  Google Scholar 

  52. P. Poddar, V.C. Srivastava, P.K. De and K.L. Sahoo, Mater. Sci. Eng., A 460–461, 357 (2007).

    Article  Google Scholar 

  53. L.X. Xi, H. Zhang, P. Wang, H.C. Li, K.G. Prashanth, K.J. Lin, I. Kaban and D.D. Gu, Ceram. Int. 44, 17635 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank SASTRA Deemed to be University and the Shanmugha Precision Forging (SPF) for providing the facility to carry out this research.

Funding

This experimental work was funded by SASTRA Deemed to be University under Prof. T. R. Rajagopalan (TRR) Research Fund.

Author information

Authors and Affiliations

Authors

Contributions

RMR: Conceptualization, Methodology, Writing: Original draft preparation, Investigation. VR: Supervision. RS: Validation.

Corresponding author

Correspondence to R. Raj Mohan.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 547 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raj Mohan, R., Venkatraman, R. & Raghuraman, S. Microstructure and Mechanical Properties of AlSi10Mg/NbC Composite Produced by Laser-Based Powder Bed Fusion (L-PBF) Process. JOM 75, 155–166 (2023). https://doi.org/10.1007/s11837-022-05428-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05428-4

Navigation