Skip to main content
Log in

Evolution of Microstructure and Mechanical Properties of a Stainless-Steel Powder/Wire Mesh Composite Porous Strip for Powder Densification

  • New Frontiers in Physical Metallurgy of Steels
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A device that automatically feeds powder and wire mesh was developed to produce a stainless-steel powder/wire mesh composite porous strip (PWMCS). The PWMCS was cut into three same-sized samples, whereby one sample comprised the original strip with no further processing, one sample was rolled for 15 passes, and the last sample was rolled twice for 15 passes and re-sintered; thus, the three samples displayed different porosities. X-ray diffraction, optical microscopy, and scanning electron microscopy were used to investigate the microstructure and phase transformation of the samples. Tensile experiments were also conducted. The results revealed that with the added rolling deformation, more γ-austenite changed to α′-martensite, and both the yield and ultimate tensile strengths increased markedly (361.4 ± 10.5% and 189.5 ± 14.7% increases, respectively). All three samples exhibited ductile fracture, and the dimples varied from large and deep in the initial state to shallow appearance in the final state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R.T. Dec, A. Zavaliangos, and J.C. Cunningham, Powder Technol. 130, 265. (2003).

    Article  Google Scholar 

  2. X. Luo, and Y. Liu, JOM 68, 3078. (2016).

    Article  Google Scholar 

  3. Y. Zhao, D. Chen, D.K. Li, J.G. Peng, and B. Yan, Metals 8, 91. (2018).

    Article  Google Scholar 

  4. A. Mazor, L. Orefice, A. Michrafy, A. de Ryck, and J.G. Khinast, Powder Technol. 337, 3. (2018).

    Article  Google Scholar 

  5. G.M. Derkacheva, G.Y. Kalutskii, and R.V. Minakova, Powder Metall. Met. Ceram. 39, 202. (2000).

    Article  Google Scholar 

  6. G.A. Vinogradov, Powder Metall. Met. Ceram. 41, 517. (2002).

    Article  Google Scholar 

  7. I. Oh, N. Naoyuki, N. Nomura, N. Masahashi, and S. Hanada, Scr. Mater. 49, 1197. (2003).

    Article  Google Scholar 

  8. S. Chikosha, T.C. Shabalala, and H.K. Chikwanda, Powder Technol. 264, 310. (2014).

    Article  Google Scholar 

  9. H. Xu, N. Zou, and Q. Li, JOM 69, 1236. (2017).

    Article  Google Scholar 

  10. K.A. Gogaev, V.A. Nazarenko, V.A. Voropaev, Y.N. Podrezov, D.G. Verbilo, O.S. Koryak, and I.Y. Okun, Powder Metall. Met. Ceram. 48, 652. (2009).

    Article  Google Scholar 

  11. R. Floriano, D.R. Leiva, S. Deledda, B.C. Hauback, and W. Botta, Int. J. Hydrogen Energy 38, 16193. (2013).

    Article  Google Scholar 

  12. M. Sakai, Y. Kondo, S. Minoura, T. Sakamoto, and T. Hirasawa, J. Power Sources 185, 559. (2008).

    Article  Google Scholar 

  13. M. Abdullah, L. Jamaludin, K. Hussin, M. Bnhussain, and M.I. Ahmad, Int. J. Mol. Sci. 13, 4388. (2012).

    Article  Google Scholar 

  14. S.V. Smirnov, A.V. Nesterenko, V.N. Bykov, and V.G. Mikhailov, Russ. Metall. 2007, 506. (2007).

    Article  Google Scholar 

  15. B. Zhou, W. Yuan, J.Y. Hu, Y. Tang, L.S. Lu, and B.H. Yu, Trans. Nonferrous Met. Soc. China 25, 2003. (2015).

    Article  Google Scholar 

  16. J. Sun, Y. Yang, and W. Di, Mater. Des. 49, 545. (2013).

    Article  Google Scholar 

  17. D.A. Ivanov, S.D. Shlyapin, G.E. Val’Yano, and L.V. Fedorova, Refract. Ind. Ceram. 58, 538. (2018).

    Article  Google Scholar 

  18. A.P. Rubshtein, I.S. Trakhtenberg, E.B. Makarova, E.B. Triphonova, D.G. Bliznets, L.I. Yakovenkova, and A.B. Vladimirov, Mater. Sci. Eng. C 35, 363. (2014).

    Article  Google Scholar 

  19. K. Ren, Q.K. Wang, Y.L. Lian, and Y.G. Wang, J. Alloys Compd. 747, 1073. (2018).

    Article  Google Scholar 

  20. S.H. Deng, R.D. Li, T.C. Yuan, S.Y. Xie, M. Zhang, K.C. Zhou, and P. Cao, Scr. Mater. 143, 25. (2018).

    Article  Google Scholar 

  21. A.M. Okoro, S.S. Lephuthing, S.R. Oke, O.E. Falodun, M.A. Awotunde, and P.A. Olubambi, JOM 71, 567. (2019).

    Article  Google Scholar 

  22. M.R. Akbarpour, and S.M. Javadhesari, JOM 72, 3262. (2020).

    Article  Google Scholar 

  23. N. Yang, Z. Wang, L. Chen, Y. Wang, and Y.B. Zhu, Int. J. Refract. Met. Hard Mater. 28, 198. (2010).

    Article  Google Scholar 

  24. J. Li, B. Wang, H. Ji, J. Zhou, X. Fu, and X. Huang, Int. J. Adv. Manuf. Tech. 94, 2149. (2018).

    Article  Google Scholar 

  25. M.Y. Zhan, Z.H. Chen, H.G. Yan, and W.J. Xia, J. Mater. Process. Technol. 182, 174. (2007).

    Article  Google Scholar 

  26. A. Chaijaruwanich, R.J. Dashwood, P.D. Lee, and H. Nagaumi, Acta Mater. 54, 5185. (2006).

    Article  Google Scholar 

  27. K. Chen, K. Liu, H. Chen, and Y. Yang, Comput. Mater. Sci. 91, 303. (2014).

    Article  Google Scholar 

  28. H. Shang, A. Mohanram, E. Olevsky, and R.K. Bordia, J. Eur. Ceram. Soc. 36, 2937. (2016).

    Article  Google Scholar 

  29. H.S. Kim, J. Mater. Process. Technol. 123, 319. (2002).

    Article  Google Scholar 

  30. X.W. Du, Z. Zhang, Y. Wang, J.L. Wang, W.M. Wang, H. Wang, and Z.Y. Fu, J. Am. Ceram. Soc. 98, 1400. (2015).

    Article  Google Scholar 

  31. D.W. Kim, H.T. Son, and J.H. Lee, J. Alloys Compd. 528, 146. (2012).

    Article  Google Scholar 

  32. A.R. Deshmukh, T. Sundararajan, R.K. Dube, and S. Bhargava, J. Mater. Process. Technol. 84, 56. (1998).

    Article  Google Scholar 

  33. Y.S. Kwon, G. Son, J. Suh, and K.T. Kim, J. Am. Ceram. Soc. 77, 3137. (1994).

    Article  Google Scholar 

  34. H.M. Jang, W.E. Rhine, and H.K. Bowen, J. Am. Ceram. Soc. 72, 954. (1989).

    Article  Google Scholar 

  35. C. Wang, and S.H. Chen, Sci. China: Phys. Mech. Astron. 55, 1051. (2012).

    Google Scholar 

  36. N.C. Ferreri, R. Pokharel, V. Ivescu, D.W. Brown, M. Knezevic, J.S. Park, M.A. Torrez, and G.T. Gray III., Acta Mater. 195, 59. (2020).

    Article  Google Scholar 

  37. K. Mumtaz, S. Takahashi, J. Echigoya, Y. Kamada, L. Zhang, H. Kikuchi, K. Ara, and M. Sato, J. Mater. Sci. 39, 1997. (2004).

    Article  Google Scholar 

  38. M. Yasuoka, P. Wang, K. Zhang, Z. Qiu, K. Kusaka, Y. Pyoun, and R. Murakami, Surf. Coat. Technol. 218, 93. (2013).

    Article  Google Scholar 

  39. Z. Dai, R. Ding, Z. Yang, C. Zhang, and H. Chen, Acta Mater. 152, 288. (2018).

    Article  Google Scholar 

  40. R. Wei, M. Enomoto, R. Hadian, H.S. Zurob, and G.R. Purdy, Acta Mater. 61, 697. (2013).

    Article  Google Scholar 

  41. H. Luo, J. Shi, C. Wang, W. Cao, X. Sun, and H. Dong, Acta Mater. 59, 4002. (2011).

    Article  Google Scholar 

  42. R. Ding, Z. Dai, M. Huang, Z. Yang, C. Zhang, and H. Chen, Acta Mater. 147, 59. (2018).

    Article  Google Scholar 

  43. C. Lopez, A. Kvryan, S. Kasnakjian, A. Coronado, S. Sujittosakul, O. Villalpando, and V.A. Ravi, JOM 67, 61. (2015).

    Article  Google Scholar 

  44. Y. Zou, Y.B. Xu, Z.P. Hu, X.L. Gu, F. Peng, X.D. Tan, S.Q. Chen, D.T. Han, R.D.K. Misra, and G.D. Wang, Mater. Sci. Eng. A 675, 153. (2016).

    Article  Google Scholar 

  45. S.F. Peterson, M.C. Mataya, and D.K. Matlock, JOM 49, 54. (1997).

    Article  Google Scholar 

  46. J. Trzaska, Arch. Metall. Mater. 60, 181. (2015).

    Article  Google Scholar 

  47. Q. Shan, Z. Li, Y. Jiang, R. Zhou, and Y. Sui, J. Mater. Sci. Technol. 29, 720. (2013).

    Article  Google Scholar 

  48. K.W. Andrews, J. Iron Steel Res. Int. 203, 721. (1965).

    Google Scholar 

  49. X. Rong, S. Liu, Y. Li, B. Hu, M. Enomoto, H. Guo, and C. Shang, Mater. Sci. Eng. A 760, 47. (2019).

    Article  Google Scholar 

  50. S.D. de Souza, P.S. Moreira, and G.L. de Faria, Mater. Res.-Ibero-am. J. Mater. 23 (2020).

  51. T.S. Wang, M. Zhang, Y.H. Wang, J. Yang, and F.C. Zhang, Scr. Mater. 68, 162. (2013).

    Article  Google Scholar 

  52. M. Zhang, T.S. Wang, Y.H. Wang, J. Yang, and F.C. Zhang, Mater. Sci. Eng. A 568, 123. (2013).

    Article  Google Scholar 

  53. J. Erneman, L. Nylöf, J. Nilsson, and H. Andrén, Mater. Sci. Technol. 20, 1245. (2004).

    Article  Google Scholar 

  54. A.W. Wilson, J.D. Madison, and G. Spanos, Scr. Mater. 45, 1335. (2001).

    Article  Google Scholar 

  55. I.G. Shaaban, Y.B. Shaheen, E.L. Elsayed, O.A. Kamal, and P.A. Adesina, Constr. Build. Mater. 171, 802. (2018).

    Article  Google Scholar 

  56. A.B. Kale, A. Bag, J.H. Hwang, E.G. Castle, M.J. Reece, and S.H. Choi, Mater. Sci. Eng. A 707, 362. (2017).

    Article  Google Scholar 

  57. F. Wakai, K. Katsura, S. Kanchika, Y. Shinoda, T. Akatsu, and K. Shinagawa, Acta Mater. 109, 292. (2016).

    Article  Google Scholar 

  58. M. Zhang, H. Chen, Y. Wang, S. Wang, R. Li, S. Li, and Y.D. Wang, J. Mater. Sci. Technol. 35, 1779. (2019).

    Article  Google Scholar 

  59. E. Ishimaru, H. Hamasaki, and F. Yoshida, J. Mater. Process. Technol. 223, 34. (2015).

    Article  Google Scholar 

  60. A. Kundu, and D.P. Field, Mater. Sci. Eng. A 667, 435. (2016).

    Article  Google Scholar 

  61. B. Babu, and L.E. Lindgren, Int. J. Plast. 50, 94. (2013).

    Article  Google Scholar 

  62. M.B. Karimi, H. Arabi, A. Khosravani, and J. Samei, J. Mater. Process. Technol. 203, 349. (2008).

    Article  Google Scholar 

  63. P. Dastur, A. Zarei-Hanzaki, R. Rahimi, M. Moallemi, V. Klemm, B.C. De Cooman, and J. Mola, Metall. Mater. Trans. A 50, 4550. (2019).

    Article  Google Scholar 

  64. D.G. Rodrigues, G. Maria, N. Viana, and D.B. Santos, Mater. Charact. 150, 138. (2019).

    Article  Google Scholar 

  65. H. Matsumoto, S. Watanabe, and S. Hanada, Mater. Sci. Eng. A 448, 39. (2007).

    Article  Google Scholar 

  66. S.M. Na, and A.B. Flatau, Scr. Mater. 66, 307. (2012).

    Article  Google Scholar 

  67. H.K. Cho, and R.E. Rowlands, Compos. Sci. Technol. 67, 2877. (2007).

    Article  Google Scholar 

  68. H. Li, M.W. Fu, J. Lu, and H. Yang, Int. J. Plast. 27, 147. (2011).

    Article  Google Scholar 

  69. Y. Liu, L. Kang, and H.B. Ge, J. Constr. Steel. Res. 158, 381. (2019).

    Article  Google Scholar 

  70. M. Behzadinasab, and J.T. Foster, Int. J. Fract. 224, 261. (2020).

    Article  Google Scholar 

  71. S. Zhang, Y. Lu, Z. Shen, C. Zhou, and Y. Lou, Int. J. Damage Mech. 29, 1199. (2019).

    Article  Google Scholar 

  72. A. Shiga, T. Yamashita, Y. Neishi, and O. Umezawa, Mater. Trans. 62, 505. (2021).

    Article  Google Scholar 

  73. S.K. Paul, S. Sivaprasad, S. Dhar, and S. Tarafder, Theor. Appl. Fract. Mec. 54, 63. (2010).

    Article  Google Scholar 

  74. A. Pequegnat, C.J. Hang, M. Mayer, Y. Zhou, J.T. Moon, and J. Persic, J. Mater. Sci.: Mater. Electron. 20, 1144. (2009).

    Google Scholar 

  75. A. Misra, X. Zhang, D. Hammon, and R.G. Hoagland, Acta Mater. 53, 221. (2005).

    Article  Google Scholar 

  76. T. Hama, R. Namakawa, Y. Maeda, and Y. Maeda, Mater. Trans. 62, 1124. (2021).

    Article  Google Scholar 

  77. X. Li, L.L. Wei, L.Q. Chen, Y. Zhao, and R. Misra, Mater. Charact. 144, 575. (2018).

    Article  Google Scholar 

  78. D.J. Dunstan, and A.J. Bushby, Int. J. Plast. 53, 56. (2014).

    Article  Google Scholar 

  79. N. Hansen, Scr. Mater. 51, 801. (2004).

    Article  Google Scholar 

  80. J.E. Jin, Y.S. Jung, and Y.K. Lee, Mater. Sci. Eng. A 449–451, 786. (2007).

    Article  Google Scholar 

  81. D.A. Hughes, and N. Hansen, Acta Mater. 148, 374. (2018).

    Article  Google Scholar 

  82. H.L. Chang, C.T. Kuo, and M.S. Liang, Microelectron. Eng. 88, 1623. (2011).

    Article  Google Scholar 

  83. K.O. Pedersen, I. Westermann, T. Furu, T.B. Rvik, and O.S. Hopperstad, Mater. Des. 70, 31. (2015).

    Article  Google Scholar 

  84. Y.C. Bai, Y.Q. Yang, Z.F. Xiao, M.K. Zhang, and D. Wang, Mater. Des. 140, 257. (2018).

    Article  Google Scholar 

  85. X. Chen, G.S. Huang, S.S. Liu, T.Z. Han, B. Jiang, A.T. Tang, Y.T. Zhu, and F.S. Pan, Trans. Nonferrous Met. Soc. China 29, 437. (2019).

    Article  Google Scholar 

  86. Y.P. Zheng, W.D. Zeng, D. Li, H.Y. Ma, P.H. Zhang, and X. Ma, J. Alloys Compd. 799, 267. (2019).

    Article  Google Scholar 

Download references

Acknowledgement

The authors acknowledge financial support from the Science and Technology Program of Guangzhou, China (No. 201604016015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoyao Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, S., Zhou, Z. Evolution of Microstructure and Mechanical Properties of a Stainless-Steel Powder/Wire Mesh Composite Porous Strip for Powder Densification. JOM 74, 2357–2368 (2022). https://doi.org/10.1007/s11837-022-05227-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05227-x

Navigation