Skip to main content
Log in

Development of an Al-Mn-Si-Based Alloy with an Improved Quasicrystalline-Forming Ability

  • Aluminum and Magnesium: New Alloys and Applications
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This investigation deals with the influence of calcium, strontium and zinc on the formation of primary, metastable quasicrystals in Al-Mn-Si alloys as these can enhance the mechanical properties of alloys. The synthesized alloys were cast into a copper mould. The castings were characterized using standard tools for studying microstructure. The Al-Mn-Si-Zn-Ca-Sr alloy contained more of the primary icosahedral quasicrystalline (iQc) phase and less of the approximant α-Al-Mn-Si phase than the Al-Mn-Si alloy. The higher volume fraction of the primary iQc phase in the Al-Mn-Si-Zn-Ca-Sr alloy is explained by the reduction of the critical radius size for nucleation and by an increase in the number of nucleation sites for the iQc phase. Increased number of nucleation sites and higher volume fraction of the primary iQc are both related to a reduction of the surface tension for the Al-based melt caused by the presence of calcium and strontium. These two elements do not become incorporated into the iQc phase but have a large effect on the course of the solidification of the investigated alloys and their constitution at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. D. Shechtman, I. Blech, D. Gratias, and J.W. Cahn, Phys. Rev. Lett. 53, 1951 (1984).

    Article  Google Scholar 

  2. A. McAlister, L. Bendersky, R. Schaefer, and F. Biancaniello, Scr. Metall. 21, 103 (1987).

    Article  Google Scholar 

  3. A.-P. Tsai, A. Inoue, and T. Masumoto, Jpn. J. Appl. Phys. 26, L1505 (1987).

    Article  Google Scholar 

  4. A.-P. Tsai, Chem. Soc. Rev. 42, 5352 (2013).

    Article  Google Scholar 

  5. A.-P. Tsai, J. Non-Cryst. Solids 334, 317 (2004).

    Article  Google Scholar 

  6. A.-P. Tsai, Sci. Technol. Adv. Mater. 9, 013008 (2008).

    Article  Google Scholar 

  7. I. Naglič, Z. Samardžija, K. Delijić, S. Kobe, J.-M. Dubois, B. Leskovar, and B. Markoli, J. Mater. Sci. 52, 13657 (2017).

    Article  Google Scholar 

  8. F. Zupanic, T. Boncina, N. Rozman, I. Anzel, W. Grogger, C. Gspan, F. Hofer, and B. Markoli, Z. Kristallogr. 223, 735 (2008).

    Article  Google Scholar 

  9. F. Zupanič, D. Wang, C. Gspan, and T. Bončina, Mater. Charact. 106, 93 (2015).

    Article  Google Scholar 

  10. F. Zupanič, G. Lojen, L. Barba, and T. Bončina, Mater. Charact. 70, 48 (2012).

    Article  Google Scholar 

  11. T. Bončina, B. Markoli, and F. Zupanič, J. Microsc. 233, 364 (2009).

    Article  MathSciNet  Google Scholar 

  12. B. Markoli, K. Delijic, N. Strekelj, and I. Naglic, Contemp. Mater. 5, 30 (2014).

    Google Scholar 

  13. B. Markoli, T. Boncina, and F. Zupanic, Recent Pat. Mater. Sci. 108, 109 (2015).

    Google Scholar 

  14. K. Stan-Głowińska, Ł. Rogal, A. Góral, A. Wierzbicka-Miernik, J. Wojewoda-Budka, N. Schell, and L. Lityńska-Dobrzyńska, J. Mater. Sci. 52, 7794 (2017).

    Article  Google Scholar 

  15. K. Stan-Głowińska and L. Lityńska-Dobrzyńska, Mater. Charact. 128, 203 (2017).

    Article  Google Scholar 

  16. H.-J. Chang, E. Fleury, G. Song, M. Lee, W.-T. Kim, and D. Kim, Mater. Sci. Eng., A 375, 992 (2004).

    Article  Google Scholar 

  17. N. Rozman, T. Boncina, I. Anzel, and F. Zupanic, Mater. Tehnol. 42, 65 (2008).

    Google Scholar 

  18. G.T. De Laissardière, D. Nguyen-Manh, and D. Mayou, Prog. Mater Sci. 50, 679 (2005).

    Article  Google Scholar 

  19. H. Kang, T. Wang, Y. Lu, J. Jie, X. Li, Y. Su, and J. Guo, J. Mater. Res. 29, 2547 (2014).

    Article  Google Scholar 

  20. G. Song, E. Fleury, S. Kim, W. Kim, and D. Kim, J. Alloys Compd. 342, 251 (2002).

    Article  Google Scholar 

  21. V. Elser and C.L. Henley, Phys. Rev. Lett. 55, 2883 (1985).

    Article  Google Scholar 

  22. D.A. Porter, K.E. Easterling, and M. Sherif, Phase Transformations in Metals and Alloys (Boca Raton: CRC Press, 2009), pp. 189–201.

    Google Scholar 

  23. U. Mizutani, H. Sato, M. Inukai, Y. Nishino, and E.S. Zijlstra, Inorg. Chem. 54, 930 (2014).

    Article  Google Scholar 

  24. L. Mondolfo, Aluminum alloys: Structure and Properties (London: Butterworth & Co (Publishers) Ltd, 1976) p. 238–240, 592–594.

  25. D. Emadi, J.E. Gruzleski, and J.M. Toguri, Metall. Mater. Trans. B 24, 1055 (1993).

    Article  Google Scholar 

  26. S.S. Kumari, R. Pillai, and B. Pai, Int. Mater. Rev. 50, 216 (2005).

    Article  Google Scholar 

  27. R.J. Tilley, Understanding Solids: The Science of Materials (Chichester: Wiley, 2004), p. 154.

    Book  Google Scholar 

  28. R.E. Smallman and R.J. Bishop, Modern Physical Metallurgy and Materials Engineering (Oxford: Elsevier, 1999), pp. 131–133.

    Google Scholar 

  29. D.A. Kaminski and M.K. Jensen, Introduction to Thermal and Fluids Engineering (New York: Wiley, 2005), pp. 496–506.

    Google Scholar 

  30. W.F. Gale and T.C. Totemeier, Smithells Metals Reference Book (New York: Elsevier, 2004).

    Google Scholar 

  31. W. Griffiths, Metall. Mater. Trans. B 30, 473 (1999).

    Article  Google Scholar 

  32. F. Zupanič and T. Bončina, J. Alloys Compd. 681, 532 (2016).

    Article  Google Scholar 

  33. D. Naumović, P. Aebi, L. Schlapbach, C. Beeli, K. Kunze, T.A. Lograsso, and D. Delaney, Phys. Rev. Lett. 87, 195506 (2001).

    Article  Google Scholar 

  34. J.L.C. Daams, P. Villars, and J.H.N. Vucht, Atlas of Crystal Structure Types for Intermetallic Phases (Materials Park: ASM International, 1991).

    Google Scholar 

  35. K. Sugiyama, N. Kaji, and K. Hiraga, Acta Crystallogr., Sect. C: Struct. Chem. 54, 445 (1998).

    Article  Google Scholar 

  36. J. Dubois, C. Janot, and J. Pannetier, Phys. Lett. A 115, 177 (1986).

    Article  Google Scholar 

  37. P.A. Bancel, P.A. Heiney, P.W. Stephens, A.I. Goldman, and P.M. Horn, Rev. Lett. 54, 2422 (1985).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Department of Materials and Metallurgy and the Department for Nanostructured Materials for all the help in the preparation of samples and the interpretation of the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blaž Leskovar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leskovar, B., Samardžija, Z., Koblar, M. et al. Development of an Al-Mn-Si-Based Alloy with an Improved Quasicrystalline-Forming Ability. JOM 72, 1533–1539 (2020). https://doi.org/10.1007/s11837-019-03702-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03702-6

Navigation