Skip to main content
Log in

The heat-transfer coefficient during the unidirectional solidification of an Al-Si alloy casting

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The heat-transfer coefficient was measured during the unidirectional solidification of Al-7 wt pct Si alloy castings against a water-cooled Cu chill. Heat-transfer coefficients in the range of 2.5 to 9 kW m−2 K−1 were obtained with solidification vertically upward associated with higher values than solidification vertically downward. Horizontal solidification was associated with intermediate values. Profiles taken across the diameters of the casting surfaces at the interface with the chill showed them to be convex toward the chill by an amount which would produce a mean gap between the casting and the chill that would account for a significant proportion of the measured heat-transfer coefficient. The convex casting surfaces were attributed to the deformation of the initial casting skin by the thermal stress produced during solidification. Heat transfer during casting solidification is shown to be a complex mechanism controlled by the microscale surface roughness of the respective surfaces, mesoscale deformation of the casting skin by thermal stress, and macroscale movements of the casting and the chill due to their relative thermal expansion and contraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Cross: Proc. Modelling of Casting, Welding and Advanced Solidification Processes VI, TMS, Warrendale, PA, 1993, pp. 115–26.

    Google Scholar 

  2. A. Shapiro, W. Stein, and P. Raboin: Proc. Modelling of Casting, Welding and Advanced Solidification Processes VI, TMS, Warrendale, PA, 1993, pp. 493–500.

    Google Scholar 

  3. D.M. Stefanescu, A. Catalina, X. Guo, L. Chuzhoy, M.A. Pershing, and G.L. Bilgen: Proc. 4th Decennial Int. Conf. on Solidification Processing, University of Sheffield, Sheffield, United Kingdom, 1997, pp. 609–13.

    Google Scholar 

  4. C.A. Muojekwu, I.V. Samarasekera, and J.K. Brimacombe: Metall. Mater. Trans. B, 1995, vol. 26B, pp. 361–82.

    CAS  Google Scholar 

  5. E. Lundback, I.L. Svensson, and P.-E. Persson: Proc. Modelling of Metal Forming Processes, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1988, pp. 37–46.

    Google Scholar 

  6. I.L. Svensson, M. Wessen, and A. Gonzalez: Proc. Modelling of Casting, Welding and Advanced Solidification Processes VI, TMS, Warrendale, PA, 1993, pp. 29–36.

    Google Scholar 

  7. K. Ho and R.D. Pehlke: AFS Trans., 1984, vol. 92, pp. 587–98.

    Google Scholar 

  8. Y. Nishida, W. Droste, and S. Engler: Metall. Trans. B, 1986, vol. 17B, pp. 833–44.

    CAS  Google Scholar 

  9. N.A. El-Mahallawy and A.M. Assar: J. Mater. Sci. Lett., 1988, vol. 7, pp. 205–08.

    Article  CAS  Google Scholar 

  10. D.G.R. Sharma and M. Krishnan: AFS Trans., 1991, vol. 99, pp. 429–38.

    CAS  Google Scholar 

  11. M. Krishnan and D.G.R. Sharma: AFS Trans., 1994, vol. 102, pp. 769–74.

    Google Scholar 

  12. P. Schmidt and I.L. Svensson: Proc. 7th Int. Conf. Numerical Methods in Thermal Problems, Pineridge Press Ltd., Swansea, United Kingdom, 1991, vol. VII, I, pp. 236–47.

    Google Scholar 

  13. P. Schmidt: Mater. Sci. Eng. A, 1993, vol. A173, pp. 271–74.

    Google Scholar 

  14. K. Ho and R.D. Pehlke: AFS Trans., 1983, vol. 91, pp. 689–98.

    Google Scholar 

  15. I.L. Svennson and P. Schmidt: Int. J. Cast Met. Res., 1993, vol. 6, pp. 127–30.

    Google Scholar 

  16. M. Bellet, M. Menai, F. Bay, P. Schmidt, and I.L. Svensson: Proc. Modelling of Casting, Welding and Advanced Solidification Processes VI, IMS, Warrendale, PA, 1993, pp. 561–68.

    Google Scholar 

  17. J. Isaac, G.P. Reddy, and G.K. Sharma: J. Inst. Eng. (India), Metall. Mater. Sci., 1989, vol. 69, pp. 17–22.

    Google Scholar 

  18. J.-C. Hwang, H.-T. Chuang, S.-H. Jong, and W.-S. Hwang: AFS Trans., 1994, vol. 102, pp. 877–83.

    CAS  Google Scholar 

  19. T.S.P. Kumar and K.N. Prabhu: Metall. Trans. B, 1991, vol. 22B, pp. 717–27.

    CAS  Google Scholar 

  20. S. Das and A.J. Paul: Metall. Trans. B, 1993, vol. 24B, pp. 1077–86.

    CAS  Google Scholar 

  21. P. Vincente-Hernandez, F. Decultieux, P. Schmidt, I.L. Svensson and C. Levaillant: Iron Steel Inst. Jpn. Int., 1995, vol. 35, pp. 805–12.

    Google Scholar 

  22. K. Ho and R.D. Pehlke: Metall. Trans. B, 1985, vol. 16B, pp. 585–94.

    CAS  Google Scholar 

  23. J. Isaac, G.P. Reddy, and G.K. Sharma: Br. Foundryman, 1985, vol. 78, pp. 465–68.

    Google Scholar 

  24. M. Bamberger, B.Z. Weiss, and M.M. Stupel: Mater. Sci. Technol., 1987, vol. 3, pp. 49–56.

    CAS  Google Scholar 

  25. P.M. Mathew, J.W. Devaal, and P.A. Krueger: Can. Met. Q., 1989, vol. 28, pp. 271–83.

    CAS  Google Scholar 

  26. A.-W.M. Assar: J. Mater. Sci. Lett., 1992, vol. 11, pp. 601–06.

    Article  CAS  Google Scholar 

  27. N.A. El-Mahallawy and A.M. Assar: J. Mater. Sci., 1991, vol. 26, pp. 1729–33.

    Article  CAS  Google Scholar 

  28. M.A. Taha, N.A. El-Mahallawy, A.-W.M. Assar, and R.M. Hammouda: J. Mater. Sci., 1992, vol. 27, pp. 3467–73.

    Article  CAS  Google Scholar 

  29. K.N. Prabhu, S.A. Kumar, and N. Venkataraman: AFS Trans., 1994, vol. 102, pp. 827–32.

    CAS  Google Scholar 

  30. M.N. Ozisik, H. Orlande, L.G. Hector, and P.N. Anyalebechi: J. Mater. Processing Manufacturing Sci., 1992, vol. 1, pp. 213–25.

    Google Scholar 

  31. L.J.D. Sully: AFS Trans., 1976, vol. 84, pp. 735–44.

    CAS  Google Scholar 

  32. J.A. Sekhar, G.J. Abbaschian, and R. Mehrabian: Mater. Sci. Eng., 1979, vol. 40, pp. 105–10.

    Article  CAS  Google Scholar 

  33. E. Gozlan and M. Bamberger: Z. Metallk., 1987, vol. 78, pp. 677–82.

    CAS  Google Scholar 

  34. K. Nyamekye, S. Wei, D. Askeland, R.C. Voigt, R.P. Pischel, W. Rasmussen, and C. Ramsay: AFS Trans., 1994, vol. 102, pp. 869–76.

    CAS  Google Scholar 

  35. V. de L. Davies: Br. Foundryman, 1980, vol. 73, pp. 331–34.

    Google Scholar 

  36. M. Bamberger and M.M. Stupel: Giessereiforschung, 1986, vol. 38, pp. 77–80.

    CAS  Google Scholar 

  37. Y. Nishida and H. Matsubara: Br. Foundryman, 1976, vol. 69, pp. 274–78.

    Google Scholar 

  38. Y. Han, D.H. Kim, H.I. Lee, and Y.G. Kim: Scripta Metall. Mater., 1994, vol. 31, pp. 1623–28.

    Article  CAS  Google Scholar 

  39. M. Krishnan and D.G.R. Sharma: Scripta Metall. Mater., 1993, vol. 28, pp. 447–51.

    Article  CAS  Google Scholar 

  40. F. Chiesa: AFS Trans., 1990, vol. 98, pp. 193–200.

    CAS  Google Scholar 

  41. A.M. Assar: Mater. Sci. Technol., 1997, vol. 13, pp. 702–04.

    CAS  Google Scholar 

  42. Assessment of Surface Texture, Part 1. Methods and Instrumentation, British Standard BS 1134, Part 1, British Standards Institution, London, United Kingdom, 1988.

  43. J.P. Holman: Heat Transfer, 6th ed., McGraw-Hill Book Company, New York, NY, 1986, pp. 131–206.

    Google Scholar 

  44. J.-C. Liu, T.-S. Lee, and W.-S. Hwang: Mater. Sci. Technol., 1991, vol. 7, pp. 954–64.

    CAS  Google Scholar 

  45. M.C. Flemings: Solidification Processing, McGraw-Hill Book Company, New York, NY, 1974, pp. 34–36.

    Google Scholar 

  46. E.H. Kennard: Kinetic Theory of Gases, McGraw-Hill Book Company, New York, 1938, pp. 311–27.

    Google Scholar 

  47. D. Shu-xin, E. Niyama, K. Anzai, and N. Matsumoto: Cast Met., 1993, vol. 6, pp. 115–20.

    Google Scholar 

  48. D. Shuxin, E. Niyama, and K. Anzai: Cast Met., 1993, vol. 6, pp. 122–26.

    Google Scholar 

  49. S. Dong, E. Niyama, and K. Anzai: Mater. Trans., JIM, 1994, vol. 35, pp. 196–98.

    Google Scholar 

  50. S.-X. Dong, E. Niyama, and K. Anzai: Iron Steel Inst. Jpn. Int., 1995, vol. 35, pp. 730–36.

    CAS  Google Scholar 

  51. S. Dong, E. Niyama, and K. Anzai: Proc. 2nd Pacific Rim Int. Conf. on Modelling of Casting and Solidification Processes, Hitachi, Japan. Jan. 25–27, 1995, pp. 85–92.

  52. Y.S. Touloukian and E.H. Buyco: Thermophysical Properties of Matter, IFI/Plenum, New York, NY, 1970, vol. 4.

    Google Scholar 

  53. K.C. Mills, B.J. Monaghan, and B.J. Keene: Int. Mat. Rev., 1996, vol. 41, pp. 209–42.

    CAS  Google Scholar 

  54. Smithells Metals Reference Book, 7th ed., E.A. Brandes, ed., Butterworth-Heinemann Ltd., Oxford, United Kingdom, 1992, pp. 14.1–14.13.

    Google Scholar 

  55. F. Siddiqui, T. Takahashi, M. Kudoh, and K. Ohsasa: Bull. Faculty Eng., Hokkaido Univ., 1987, NO. 136, pp. 11–20.

  56. W. Kurz and D.J. Fisher: Fundamentals of Solidification, 3rd ed., Trans Tech Publications Ltd., Aedermannsdorf, Switzerland, 1989, pp. 293–94.

    Google Scholar 

  57. J.L. Murray and A.J. McAlister: Bull. Alloy Phase Diagrams, 1984, vol. 5, pp. 74–84.

    CAS  Google Scholar 

  58. F. Bell, D.T. Gethin, and J.T. Anderson: Cast Met., 1995, vol. 8, pp. 51–56.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griffiths, W.D. The heat-transfer coefficient during the unidirectional solidification of an Al-Si alloy casting. Metall Mater Trans B 30, 473–482 (1999). https://doi.org/10.1007/s11663-999-0081-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-999-0081-y

Keywords

Navigation