Skip to main content
Log in

Atom Probe Tomography: A Review of Correlative Analysis of Interfaces and Precipitates in Metals and Alloys

  • 3D Nanoscale Characterization of Metals, Minerals, and Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This article provides a brief review of the history and recent developments of direct correlative atom probe tomography (APT) as related to characterization of internal interfaces and precipitates in metals and alloys. Correlative APT is defined as APT combined with a correlative electron microscopy technique, analytical technique, or computational method for the purpose of gaining greater understanding of phase transformations or structure–property relationships. In the first part of this article, the early history of correlative APT is reviewed. Additionally, recent advances in specimen preparation hardware and methods that facilitate performing direct correlative APT are discussed in the second section. In the third part of the article, several examples of direct correlative APT are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Adapted from Ref. 36, with permission from Elsevier)

Fig. 2

(Adapted from Ref. 49, with permission from Elsevier) (Color figure online)

Fig. 3

(Adapted from Ref. 51, with permission from Cambridge University Press) (Color figure online)

Fig. 4

(Adapted from Ref. 48, with permission from Elsevier) (Color figure online)

Fig. 5

(Adapted from Ref. 52, with permission from Elsevier) (Color figure online)

Fig. 6

(Adapted from Ref. 52, with permission from Elsevier) (Color figure online)

Fig. 7

(Adapted by permission from Ref. 56) (Color figure online)

Similar content being viewed by others

References

  1. A. Devaraj, D.E. Perea, J. Liu, L.M. Gordon, T.J. Prosa, P. Parikh, D.R. Diercks, S. Meher, R.P. Kolli, Y.S. Meng, and S. Thevuthasan, Int. Mater. Rev. 63, 68 (2018).

    Article  Google Scholar 

  2. D.N. Seidman, Annu. Rev. Mater. Res. 37, 127 (2007).

    Article  Google Scholar 

  3. T.F. Kelly and D.J. Larson, Annu. Rev. Mater. Res. 42, 1 (2012).

    Article  Google Scholar 

  4. R.P. Kolli and D.N. Seidman, Microsc. Microanal. 13, 272 (2007).

    Article  Google Scholar 

  5. http://www.cameca.com/products/apt/leap5000. Accessed 21 Mar 2018.

  6. E.A. Marquis, D.N. Seidman, M. Asta, C. Woodward, and V. Ozoliņš, Phys. Rev. Lett. 91, 036101 (2003).

    Article  Google Scholar 

  7. D. Isheim and D.N. Seidman, Surf. Interface Anal. 36, 569 (2004).

    Article  Google Scholar 

  8. D. Isheim, M.S. Gagliano, M.E. Fine, and D.N. Seidman, Acta Mater. 54, 841 (2006).

    Article  Google Scholar 

  9. Q. Liu and S. Zhao, MRS Commun. 2, 127 (2012).

    Article  Google Scholar 

  10. D. Isheim, R.P. Kolli, M.E. Fine, and D.N. Seidman, Scr. Mater. 55, 35 (2006).

    Article  Google Scholar 

  11. S. Vaynman, D. Isheim, R.P. Kolli, S.P. Bhat, D.N. Seidman, and M.E. Fine, Metall. Mater. Trans. A 39, 363 (2008).

    Article  Google Scholar 

  12. R.P. Kolli and D.N. Seidman, Acta Mater. 56, 2073 (2008).

    Article  Google Scholar 

  13. R.P. Kolli, R.M. Wojes, S. Zaucha, and D.N. Seidman, Int. J. Mater. Res. 99, 513 (2008).

    Article  Google Scholar 

  14. A. Devaraj, R.E.A. Williams, S. Nag, R. Srinivasan, H.L. Fraser, and R. Banerjee, Scr. Mater. 61, 701 (2009).

    Article  Google Scholar 

  15. K.E. Knipling, R.A. Karnesky, C.P. Lee, D.C. Dunand, and D.N. Seidman, Acta Mater. 58, 5184 (2010).

    Article  Google Scholar 

  16. R.P. Kolli and D.N. Seidman, Int. J. Mater. Res. 102, 1115 (2011).

    Article  Google Scholar 

  17. S. Mburu, R.P. Kolli, D.E. Perea, S.C. Schwarm, A. Eaton, J. Liu, S. Patel, J. Bartrand, and S. Ankem, Mater. Sci. Eng. A 690, 365 (2017).

    Article  Google Scholar 

  18. S. Mburu, R.P. Kolli, D.E. Perea, J. Liu, S.C. Schwarm, and S. Ankem, Microsc. Microanal. 23, 660 (2017).

    Article  Google Scholar 

  19. R.P. Kolli, A.A. Herzing, and S. Ankem, Mater. Charact. 122, 30 (2016).

    Article  Google Scholar 

  20. A.H. Hunter, J.D. Farren, J.N. DuPont, and D.N. Seidman, Metall. Mater. Trans. A 44, 1741 (2013).

    Article  Google Scholar 

  21. A.H. Hunter, J.D. Farren, J.N. DuPont, and D.N. Seidman, Metall. Mater. Trans. A 46, 3117 (2015).

    Article  Google Scholar 

  22. R.P. Kolli, Z. Mao, D.N. Seidman, and D.T. Keane, Appl. Phys. Lett. 91, 241903 (2007).

    Article  Google Scholar 

  23. R.P. Kolli and D.N. Seidman, Microsc. Microanal. 20, 1727 (2014).

    Article  Google Scholar 

  24. M.D. Mulholland and D.N. Seidman, Acta Mater. 59, 1881 (2011).

    Article  Google Scholar 

  25. E.A. Jägle, P.-P. Choi, J.V. Humbeeck, and D. Raabe, J. Mater. Res. 29, 2072 (2014).

    Article  Google Scholar 

  26. E.A. Jägle, Z. Sheng, L. Wu, L. Lu, J. Risse, A. Weisheit, and D. Raabe, JOM 68, 943 (2016).

    Article  Google Scholar 

  27. B.P. Gorman, A. Puthucode, D.R. Diercks, and M.J. Kaufman, Mater. Sci. Technol. 24, 682 (2013).

    Article  Google Scholar 

  28. D. Haley, T. Petersen, S.P. Ringer, and G.D.W. Smith, J. Microsc. 244, 170 (2011).

    Article  Google Scholar 

  29. B.P. Gorman, D.R. Diercks, N. Salmon, E. Stach, G. Amador, and C. Hartfield, Microsc. Today 16, 42 (2008).

    Article  Google Scholar 

  30. M. Herbig, Scr. Mater. 148, 98 (2018).

    Article  Google Scholar 

  31. W. Lefebvre-Ulrikson, Atom Probe Tomography (Amsterdam: Elsevier, 2016), pp. 319–351.

    Book  Google Scholar 

  32. H. Nordén and K.M. Bowkett, J. Sci. Instrum. 44, 238 (1967).

    Article  Google Scholar 

  33. J.E. Fasth, B. Loberg, and H. Nordén, J. Sci. Instrum. 44, 1044 (1967).

    Article  Google Scholar 

  34. A. Henjered and H. Norden, J. Phys. E: Sci. Instrum. 16, 617 (1983).

    Article  Google Scholar 

  35. B.W. Krakauer and D.N. Seidman, Phys. Rev. B 48, 6724 (1993).

    Article  Google Scholar 

  36. B.W. Krakauer and D.N. Seidman, Acta Mater. 46, 6145 (1998).

    Article  Google Scholar 

  37. D.J. Larson, D.T. Foord, A.K. Petford-Long, H. Liew, M.G. Blamire, A. Cerezo, and G.D.W. Smith, Ultramicroscopy 79, 287 (1999).

    Article  Google Scholar 

  38. D.J. Larson, K.F. Russell, and A. Cerezo, J. Vac. Sci. Technol. B 18, 328 (2000).

    Article  Google Scholar 

  39. G.B. Thompson, M.K. Miller, and H.L. Fraser, Ultramicroscopy 100, 25 (2004).

    Article  Google Scholar 

  40. M.K. Miller, K.F. Russell, K. Thompson, R. Alvis, and D.J. Larson, Microsc. Microanal. 13, 428 (2007).

    Article  Google Scholar 

  41. D.J. Larson, T.J. Prosa, R.M. Ulfig, B.P. Geiser, and T.F. Kelly, Local Electrode Atom Probe Tomography—A User’s Guide (New York: Springer, 2013).

    Book  Google Scholar 

  42. D.K. Schreiber, M.J. Olszta, and S.M. Bruemmer, Scr. Mater. 69, 509 (2013).

    Article  Google Scholar 

  43. L. Kovarik, F. Yang, A. Garg, D. Diercks, M. Kaufman, R.D. Noebe, and M.J. Mills, Acta Mater. 58, 4660 (2010).

    Article  Google Scholar 

  44. A. Devaraj, S. Nag, and R. Banerjee, Scr. Mater. 69, 513 (2013).

    Article  Google Scholar 

  45. J.-B. Seol, D. Raabe, P. Choi, H.-S. Park, J.-H. Kwak, and C.-G. Park, Scr. Mater. 68, 348 (2013).

    Article  Google Scholar 

  46. C.A. Williams, E. Marquis, A. Cerezo, and G.D.W. Smith, J. Nucl. Mater. 400, 37 (2010).

    Article  Google Scholar 

  47. P.J. Felfer, T. Alam, S.P. Ringer, and J.M. Cairney, Microsc. Res. Tech. 75, 484 (2012).

    Article  Google Scholar 

  48. M. Herbig, P. Choi, and D. Raabe, Ultramicroscopy 153, 32 (2015).

    Article  Google Scholar 

  49. I. Arslan, E.A. Marquis, M. Homer, M.A. Hekmaty, and N.C. Bartelt, Ultramicroscopy 108, 1579 (2008).

    Article  Google Scholar 

  50. D.B. Williams and C.B. Carter, Transmission Electron Microscopy: A Textbook for Materials Science, Second (New York: Springer, 2009).

    Book  Google Scholar 

  51. W. Guo, B.T. Sneed, L. Zhou, W. Tang, M.J. Kramer, D.A. Cullen, and J.D. Poplawsky, Microsc. Microanal. 22, 1251 (2016).

    Article  Google Scholar 

  52. M. Herbig, M. Kuzmina, C. Haase, R.K.W. Marceau, I. Gutierrez-Urrutia, D. Haley, D.A. Molodov, P. Choi, and D. Raabe, Acta Mater. 83, 37 (2015).

    Article  Google Scholar 

  53. Z.K. Teng, F. Zhang, M.K. Miller, C.T. Liu, S. Huang, Y.T. Chou, R.H. Tien, Y.A. Chang, and P.K. Liaw, Mater. Lett. 71, 36 (2012).

    Article  Google Scholar 

  54. C.K. Sudbrack, R.D. Noebe, and D.N. Seidman, Acta Mater. 55, 119 (2007).

    Article  Google Scholar 

  55. O. Dmitrieva, D. Ponge, G. Inden, J. Millán, P. Choi, J. Sietsma, and D. Raabe, Acta Mater. 59, 364 (2011).

    Article  Google Scholar 

  56. Z. Mao, C.K. Sudbrack, K.E. Yoon, G. Martin, and D.N. Seidman, Nat. Mater. 6, 210 (2007).

    Article  Google Scholar 

  57. Y. Amouyal, Z. Mao, and D.N. Seidman, Acta Mater. 58, 5898 (2010).

    Article  Google Scholar 

  58. Y. Amouyal, Z. Mao, and D.N. Seidman, Acta Mater. 74, 296 (2014).

    Article  Google Scholar 

  59. Y. Huang, Z. Mao, R.D. Noebe, and D.N. Seidman, Acta Mater. 121, 288 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank Dr. Arun Devaraj, Pacific Northwest National Laboratory (PNNL), and Professor Philip Eisenlohr, Michigan State University, for the opportunity to write this article. Dr. Daniel E. Perea, PNNL, is thanked for reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Prakash Kolli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolli, R.P. Atom Probe Tomography: A Review of Correlative Analysis of Interfaces and Precipitates in Metals and Alloys. JOM 70, 1725–1735 (2018). https://doi.org/10.1007/s11837-018-2934-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-2934-9

Navigation