Advertisement

JOM

, Volume 68, Issue 3, pp 1012–1020 | Cite as

Microstructure Development in Electron Beam-Melted Inconel 718 and Associated Tensile Properties

  • M. M. Kirka
  • K. A. Unocic
  • N. Raghavan
  • F. Medina
  • R. R. Dehoff
  • S. S. Babu
Article

Abstract

During the electron beam melting (EBM) process, builds occur at temperatures in excess of 800°C for nickel-base superalloys such as Inconel 718. When coupled with the temporal differences between the start and end of a build, a top-to-bottom microstructure gradient forms. Characterized in this study is a microstructure gradient and associated tensile property gradient common to all EBM Inconel 718 builds, the extent of which is dependent on build geometry and the specifics of a build’s processing history. From the characteristic microstructure elements observed in EBM Inconel 718 material, the microstructure gradient can be classified into three distinct regions. Region 1 (top of a build) is comprised of a cored dendritic structure that includes carbides and Laves phase within the interdendritic regions. Region 2 is an intermediate transition zone characterized by a diffuse dendritic structure, dissolution of the Laves phase, and precipitation of \(\delta \) needle networks within the interdendritic regions. The bulk structure (Region 3) is comprised of a columnar grain structure lacking dendritic characteristics with \(\delta \) networks having precipitated within the grain interiors. Mechanically, at both 20°C and 650°C, the yield strength, ultimate tensile strength, and elongation at failure exhibit the general trend of increasing with increasing build height.

Notes

Acknowledgements

This research is sponsored by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office, under Contract DE-AC05-00OR22725 with UT-Battelle, LLC. The United States Government retains, and the publisher, by accepting the article for publication, acknowledges that the United States Government retains, a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. This research was performed, in part, using instrumentation provided by the Department of Energy, Office of Nuclear Energy, Fuel Cycle R&D Program and the Nuclear Science User Facilities.

References

  1. 1.
    H.J. Wagner, and A.M. Hal, Tech. Rep. (Battelle Memorial Institue, Columbus, 1965)Google Scholar
  2. 2.
    C. Sims, The Superalloys (Wiley, New York, 1972)Google Scholar
  3. 3.
    J.F. Radavich, in Superalloy 718: Metallurgy and Applications, ed. by E. Loria (Minerals, Metals & Materials Society, USA, 1989), pp. 229–240Google Scholar
  4. 4.
    I. Gibson, D. Rosen, and B. Stucker, Additive Manufacturing Technologies (Springer, New York, 2010)CrossRefGoogle Scholar
  5. 5.
    H.E. Helmer, C. Körner, and R.F. Singer, J. Mater. Res. 29, 1987 (2014)CrossRefGoogle Scholar
  6. 6.
    W. Sames, K. Unocic, R. Dehoff, T. Lolla, and S. Babu, J. Mater. Res. 29, 1920 (2014)CrossRefGoogle Scholar
  7. 7.
    Y. Tian, D. McAllister, H. Colijn, M. Mills, D. Farson, M. Nordin, and S. Babu, Metall. Mater. Trans. A 45, 4470 (2014)CrossRefGoogle Scholar
  8. 8.
    K. Unocic, L. Kolbus, R. Dehoff, S. Dryepondt, and B. Pint, Corrosion (NACE International, USA, 2014)Google Scholar
  9. 9.
    K. Amato, S. Gaytan, L. Murr, E. Martinez, P. Shindo, J. Hernandez, S. Collins, and F. Medina, Acta Mater. 60, 2229 (2012)CrossRefGoogle Scholar
  10. 10.
    Z. Wang, K. Guan, M. Gao, X. Li, X. Chen, and X. Zeng, J. Alloys Compd. 513, 518 (2012)CrossRefGoogle Scholar
  11. 11.
    A. Strondl, R. Fischer, G. Frommeyer, and A. Schneider, Mater. Sci. Eng. A 480, 138 (2008)CrossRefGoogle Scholar
  12. 12.
    L. Carter, M. Attallah, and R. Reed, in Superalloys 2012, ed. by E. Huron, R. Reed, M. Hardy, M. Mills, R. Montero, P. Portella, and J. Telesman (Wiley, New York, 2012), p. 577CrossRefGoogle Scholar
  13. 13.
    L. Murr, E. Martinez, X. Pan, S. Gaytan, J. Castro, C. Terrazas, F. Medina, R. Wicker, and D. Abbott, Acta Mater. 61, 4289 (2013)CrossRefGoogle Scholar
  14. 14.
    L. Murr, E. Martinez, S. Gaytan, D. Ramirez, B. Machado, P. Shindo, J. Martinez, F. Medina, J. Wooten, D. Ciscel, U. Ackelid, and R. Wicker, Metall. Mater. Trans. A 42, 3491 (2011)CrossRefGoogle Scholar
  15. 15.
    ASTM E08–13a, Standard Test Methods for Tension Testing of Metallic Mater. Tech. Rep. (ASTM International, 2013)Google Scholar
  16. 16.
    ASTM E21–09, Standard Test Methods for Elevated Temperature Tension Tests of Metallic Mater. Tech. Rep. (ASTM International, 2009)Google Scholar
  17. 17.
    R.G. Thompson, and S. Genculc, Weld. Res. Supp. 337, (1983)Google Scholar
  18. 18.
    R. Thompson, JOM 40, 44 (1988)CrossRefGoogle Scholar
  19. 19.
    S. David, S. Babu, and J. Vitek, JOM 55, 14 (2003)CrossRefGoogle Scholar
  20. 20.
    S. Babu, M. Miller, J. Vitek, and S. David, Acta Mater. 49, 4149 (2001)CrossRefGoogle Scholar
  21. 21.
    M. Gäumann, C. Bezençon, P. Canalis, and W. Kurz, Acta Mater. 49, 1051 (2001)CrossRefGoogle Scholar
  22. 22.
    J.D. Hunt, Mater. Sci. Eng. 65, 75 (1984)CrossRefGoogle Scholar
  23. 23.
    J. Tien, and T. Caulfield, Superalloys, Supercomposites, and Superceramics (Academic, New York, 1989)Google Scholar
  24. 24.
    Y. Zhang, Z. Li, P. Nie, and Y. Wu, Metall. Mater. Trans. A 44, 5513 (2013)CrossRefGoogle Scholar
  25. 25.
    W. Kurz, B. Giovanola, and R. Trivedi, Acta Metall. 34, 823 (1986)CrossRefGoogle Scholar
  26. 26.
    A. Devaux, L. Nazé, R. Molins, A. Pineau, A. Organista, J. Guédou, J. Uginet, and P. Héritier, Mater. Sci. Eng. A 486, 117 (2008)CrossRefGoogle Scholar
  27. 27.
    G. Bouse, in Superalloys 718, 625 and Various Derivatives, 1989, ed. by E. Loria, p. 69Google Scholar
  28. 28.
    J. Schirra, R. Caless, and R. Hatala, in Superalloys 718, 625 and Various Derivatives, 1989, ed. by E. Loria, p. 375Google Scholar
  29. 29.
    G. Sjoberg, N. Ingesten, and R. Carlson, in Superalloys 718, 625 and Various Derivatives, 1989, ed. by E. Loria, p. 603Google Scholar
  30. 30.
    X. Liang, R. Zhang, Y. Yang, and Y. Han, in Superalloys 718, 625, 706 and Various Derivatives, 1994, ed. by E. Loria, p. 947Google Scholar
  31. 31.
    M. Sundararaman, P. Mukhopadhyay, and S. Banerjee, Mater. Trans. A 19, 453 (1988)CrossRefGoogle Scholar
  32. 32.
    J.M. Oblak, D.F. Paulonis, and D.S. Duvall, Metall. Mater. Trans. 5, 143 (1974)Google Scholar
  33. 33.
    M. Sundararaman, and P. Mukhopadhyay, Mater. Char. 31, 191 (1993)CrossRefGoogle Scholar
  34. 34.
    D.A. Korzekwa, Int. J. Cast Metals Res. 22, 187 (2009)CrossRefGoogle Scholar
  35. 35.
    W. Cao, R. Kennedy, and M. Willis. in Superalloys 718, 625 and Various Derivatives, 1991, ed. by E. Loria, p. 147Google Scholar
  36. 36.
    G.A. Rao, M. Srinivas, and D. Sarma, Mater. Sci. Technol. 20, 1161 (2004)CrossRefGoogle Scholar
  37. 37.
    H. Zhang, S. Zhang, M. Cheng, and Z. Li, Mater. Char. 61, 49 (2010)CrossRefGoogle Scholar
  38. 38.
    S. Azadian, L.-Y. Wei, and R. Warren, Mater. Char. 53, 7 (2004)CrossRefGoogle Scholar
  39. 39.
    S. Wlodek, and D. Field, in Superalloys 718, 625, 706 and Various Derivatives, 1994, ed. by E. Loria, p. 659Google Scholar
  40. 40.
    M.C. Chaturvedi, and Y.-F. Han, Metal Sci. 17, 145 (1983)CrossRefGoogle Scholar
  41. 41.
    A. Argon, Strengthening Mechanisms in Crystal Plasticity (Oxford University Press, New York, 2007), pp. 113–144CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society (outside the U.S.) 2016

Authors and Affiliations

  • M. M. Kirka
    • 1
    • 2
  • K. A. Unocic
    • 2
  • N. Raghavan
    • 3
  • F. Medina
    • 4
  • R. R. Dehoff
    • 1
    • 2
  • S. S. Babu
    • 1
    • 5
    • 6
  1. 1.Manufacturing Demonstration FacilityOak Ridge National LaboratoryKnoxvilleUSA
  2. 2.Materials Science & Technology DivisionOak Ridge National LaboratoryOak RidgeUSA
  3. 3.Bredesen Center for Interdisciplinary ResearchThe University of TennesseeKnoxvilleUSA
  4. 4.Arcam ABMolndalSweden
  5. 5.Energy and Transportation Science DivisionOak Ridge National LaboratoryOak RidgeUSA
  6. 6.Department of Mechanical, Aerospace and Biomedical EngineeringThe University of TennesseeKnoxvilleUSA

Personalised recommendations