Skip to main content
Log in

Welding: Solidification and microstructure

  • Overview
  • Welding
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Parameters that control the solidification of castings also control the solidification and microstructure of welds. However, various physical processes that occur due to the interaction of the heat source with the metal during welding add a new dimension to the understanding of the weld pool solidification. Conventional theories of solidification over a broad range of conditions can be extended to understand weld pool solidification. In certain cases, because of rapid cooling rate effects, it is not unusual to observe nonequilibrium microstructures. Recent developments in the application of computational thermodynamics and kinetic models, studies on single-crystal welds, and advanced in-situ characterization techniques have led to a better understanding of weld solidification and microstructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.F. Savage, Welding World, 18 (1980), p. 89.

    CAS  Google Scholar 

  2. S.A. David and J.M. Vitek, Inter. Mater. Review, 34 (5) (1989), p. 213.

    CAS  Google Scholar 

  3. G.J. Davies and J.G. Garland, Inter. Mater. Review, 20 (1975), p. 83.

    CAS  Google Scholar 

  4. F. Matsuda, T. Hashimoto, and T. Senda, Trans. Natl. Res. Inst. Met (JPN), 11 (1) (1969), p. 83.

    Google Scholar 

  5. K.E. Easterling, Introduction to Physical Metallurgy of Welding (London: Butterworths, 1983).

    Google Scholar 

  6. S. Kou, Welding Metallurgy, Second edition (New York: John Wiley & Sons, Inc., 2002).

    Google Scholar 

  7. R. Mehrabian, Inter. Metall. Review, 27 (1982), p. 185.

    CAS  Google Scholar 

  8. J.M. Vitek, A. DasGupta, and S.A. David, Metall. Trans., 14A (1983), p. 1833.

    CAS  Google Scholar 

  9. S.A. David, J.M. Vitek, and T.L. Hebble, Weld J., 66 (1987), p. 289s.

  10. S. Katayama and A. Matsunawa, Proc. of Int’l Congress on Application of Lasers and Electro Optics, vol. 4 (Boston, MA: Laser Institute of America, 1984), p. 60.

    Google Scholar 

  11. J.W. Elmer, S.M. Allen, and T.W. Eager, Metall. Trans. 20A (1989), p. 2117.

    CAS  Google Scholar 

  12. R. Trivedi and W. Kurz, Acta Metall. 34 (1986), p. 1663.

    Article  CAS  Google Scholar 

  13. W.J. Boettinger and S.R. Coriell, Mater. Sci. Eng., 65 (1984), p. 27.

    Article  CAS  Google Scholar 

  14. M.J. Aziz, J. Appl. Phys., 53 (1982), p. 1158.

    Article  CAS  Google Scholar 

  15. S.A. David and T. DebRoy, Science, 257 (1992), p. 497.

    Article  Google Scholar 

  16. T. DebRoy and S.A. David, Reviews of Modern Physics, 67 (1) (1995), p. 85.

    Article  CAS  Google Scholar 

  17. S.A. David and T. DebRoy, MRS Bulletin, XIX (1) (1994), p. 29.

    Google Scholar 

  18. T. Zacharia et al., Metall. Trans., 20A (1989), p.957.

    CAS  Google Scholar 

  19. K. Hong, D.C. Weckman, and A.B. Strong, Trends in Welding Research, ed. H.B. Smartt, J.A. Johnson, and S.A. David (Materials Park, OH: ASM Int., 1996), p. 399.

    Google Scholar 

  20. R.T.C. Choo and J. Szekely, Weld J., 73 (1994), p. 255.

    Google Scholar 

  21. W. Pitscheneder et al., Weld J, 75 (3) (1996), p. 71s.

  22. Y. Dong et al., Weld J., 76 (10) (1997), p. 442s.

  23. J. Goldak et al., Mathematical Modeling of Weld Phenomena 3, ed. H. Cerjak (London: Institute of Materials, 1997), p. 543.

    Google Scholar 

  24. T. DebRoy, Proceedings of the Julian Szekely Symposium on Materials Processing, ed. H.Y. Sohn, J.W. Evans, and D. Apelian (Warrendale, PA: TMS, 1997), p. 365.

    Google Scholar 

  25. T. DebRoy et al., Mathematical Modeling of Weld Phenomena 6, ed. H. Cerjak (London: Institute of Materials, 2002), p. 21.

    Google Scholar 

  26. S.A. David and C.T. Liu, Weld J., 61 (1982), p. 157s.

  27. M. Rappaz et al., Metall. Trans. 20A (1989), p. 1125.

    CAS  Google Scholar 

  28. S.A. David et al., Metall. Trans. A, 21A, (1990), p. 1753.

    CAS  Google Scholar 

  29. J.M. Vitek et al. Int’l Trends in Welding Science and Tech., ed. S.A. David and J.M. Vitek (Materials Park, OH: ASM Int., 1993), p. 167.

    Google Scholar 

  30. J.M. Vitek et al., Sci Technol. Weld. Joining, 6 (5) (2001), p. 305.

    Article  CAS  Google Scholar 

  31. B. Radhakrishnan and T. Zacharia, Modeling and Control of Joining Processes, ed. T. Zacharia (Miami, FL: Am. Weld. Soc., 1994), p. 298.

    Google Scholar 

  32. Ch.-A. Gandin, M. Rappaz, and R. Tintillier, Metall. Trans., 24A (1993), p. 467.

    CAS  Google Scholar 

  33. W.B. Dress, T. Zacharia, and B. Radhakrishnan, Modeling and Control of Joining Processes, ed. T. Zacharia (Miami, FL: Am. Weld. Soc., 1994), p. 321.

    Google Scholar 

  34. S.S. Babu et al., Mater. Sci. Technol., 11 (1995), p. 186.

    CAS  Google Scholar 

  35. M.C. Flemings, Solidification Processing (New York: McGraw Hill, 1974).

    Google Scholar 

  36. W. Kurz and D.J. Fisher, Fundamentals of Solidification (Aedermannsdorf, Switzerland: Trans-Tech. Publications, 1986).

    Google Scholar 

  37. R. Trivedi et al., J. Appl. Phys., 93 April (2003) p. 4,885.

    Article  CAS  Google Scholar 

  38. J.A. Brooks and M.I. Baskes, Advances in Welding Science and Technology, ed. S.A. David (Materials Park, OH: ASM Int., 1986), p. 93.

    Google Scholar 

  39. E. Scheil, Z. Metall, 34 (1942), p 70.

    Google Scholar 

  40. T. Matsumiya et al., Nippon Steel Technical Report 57 (1993), p. 50.

    Google Scholar 

  41. W.F. Savage, C.D. Lundin, and A. Aronson, Weld J, 44 (1965), p. 175.

    Google Scholar 

  42. T. Ganaha, B.P. Pearce, and H.W. Kerr, Metall. Trans, 11A (1980), p. 1351.

    CAS  Google Scholar 

  43. H.W. Kerr and J.C. Villefuerta, Metal. Sci. of Joining, ed. K.J. Cieslak et al. (Warrendale, PA: TMS, 1991), p. 11.

    Google Scholar 

  44. J.M. Vitek et al., to be published in proceedings of Thermec 2003, (Switzerland: Trans Tech Publishers) Madrid, Spain.

  45. S.A. David et al., Sci. Technol. Weld. Joining, 2 (2) (1997), p. 79.

    CAS  Google Scholar 

  46. J.M. Vitek, S.A. David, and L.A. Boatner, Sci. Technol. Weld. Joining, 2 (3) (1997), p. 109.

    CAS  Google Scholar 

  47. M. Gäumann, R. Trivedi, and W. Kurz; Mater. Sci, Eng., A 226–228 (1997), p. 763.

    Google Scholar 

  48. T.M. Pollock and W.H. Murphy, Metall. Mater. Trans., 27A (1996), p. 1081.

    Google Scholar 

  49. J.M. Vitek and S.A. David, Laser Materials Processing IV, ed. J. Mazumder, K. Mukherjee, and B.L. Mordike (Warrendale, PA: TMS 1994), p. 153.

    Google Scholar 

  50. H.K.D.H. Bhadeshia, S.A. David, and J.M. Vitek, Mater. Sci. Technol. 7 (1991) p. 50.

    CAS  Google Scholar 

  51. B. Sundman, B. Jansson, and J.O. Andersson, Calphad, 9 (1985) p. 1.

    Article  Google Scholar 

  52. J. Agren, ISIJ International, 32 (1992), p. 291.

    Google Scholar 

  53. S. Fukumoto and W. Kurz, ISIJ International, 38 (1998), p. 71.

    CAS  Google Scholar 

  54. U. Dilthey, V. Pavlik, and T. Reichel, Mathematical Modeling of Weld Phenomena 3, ed. H. Cerjak (London: Institute of Materials, 1997) p. 85.

    Google Scholar 

  55. A.C. Hall et al., Proceedings of the 11th International Conference and Exhibition on Computer Technology in Welding (Columbus, Ohio, 2001).

  56. J.W. Elmer, J. Wong, and T. Ressler, Metall. Mater. Trans., 29A (1998) p. 276.

    Google Scholar 

  57. S.S. Babu et al., J. Proc. Roy. Soc. A., 458 (2002), p. 811.

    Article  CAS  Google Scholar 

  58. S.S. Babu et al., Acta Materialia, 50 (2002), p. 4763.

    Article  CAS  Google Scholar 

  59. J.W. Elmer, T. Palmer, and S.S. Babu, Adv. Mater. Proc., 160 (2002) p. 23.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Editor’s Note: A hypertext-enhanced version of this article is available on-line atwww.tms.org/pubs/journals/JOM/0306/David-0306.html

For more information, contact S.A. David, Oak Ridge National Laboratory, Metals & Ceramics Division, Building 4508, MS 6095, Oak Ridge, Tennessee 37831-6095; (865) 574-4804; fax (865) 574-4928; e-mail Davidsa1@ornl.gov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

David, S.A., Babu, S.S. & Vitek, J.M. Welding: Solidification and microstructure. JOM 55, 14–20 (2003). https://doi.org/10.1007/s11837-003-0134-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-003-0134-7

Keywords

Navigation