Skip to main content
Log in

Effect of Cooling Rate on the Microstructure of Laser-Remelted INCONEL 718 Coating

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The rapid cooling rate was achieved during laser remelting with high scanning speed. The microstructure and precipitations in the INCONEL 718 remelted layer were investigated by scanning electron microscope (SEM), transmission electron microscope (TEM), and solid phase microextraction (SPME). The phase transition temperatures were carried out by differential thermal analysis (DTA). The results showed that columnar-dendritic and equiaxial structures appeared in different regions of the remelted layer. The dendritic spacing of the columnar dendrite and equiaxed grain size decreased with increasing scanning speed. The precipitations in the remelted layer consisted of Laves, granular phase, and a small quantity of quadrangular nitride (Ti, Nb)N. The granular phase Nb(Al, Ti) was precipitated at about 1272 K (999 °C) with the spontaneous decomposition of the supersaturation Laves during the cooling stage, and the small-size granule became coarsened to 0.2 to 0.9 μm during the cooling stage. The noncoherent relationship existed between the granular phase and austenite, and the coarsening of granule was related to the cube root of the diffusion coefficient, interfacial energy, and diffusion time. The microhardness of the remelted layer was increased by increasing the cooling rate due to the Nb atomic solid solution strengthening caused by the distorted elastic stress field and the short-range internal stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. INCONEL 718 is a trademark of Special Metals Corporation, Huntington, WV.

References

  1. D.G.L. Prakash, M.J. Walsh, D. MacLachlan, and A.M. Korsunsky: Int. J. Fatigue, 2009, vol. 31, pp. 1966–77.

    Article  CAS  Google Scholar 

  2. D.A. Woodford: Energy Mater., 2006, vol. 1, pp. 59–79.

    Article  CAS  Google Scholar 

  3. X.L. Xu and Z.W. Yu: Eng. Failure Anal., 2007, vol. 14, pp. 1322–28.

    Article  CAS  Google Scholar 

  4. O. Yilmaz, N. Gindy, and J. Gao: Robot. Comp. Integrated Manufact., 2010, vol. 26, pp. 190–201.

    Article  Google Scholar 

  5. M. Gäumann, C. Bezençon, P. Canalis, and W. Kurz: Acta Mater., 2001, vol. 49, pp. 1051–62.

    Google Scholar 

  6. M. Gaumann, S. Henry, F. Cleton, J.D. Wagniere, and W. Kurz: Mater. Sci. Eng. A, 1999, vol. 271A, pp. 232–41.

    Google Scholar 

  7. H. Qi, M. Azer, and A. Ritter: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 2410–22.

    Article  CAS  Google Scholar 

  8. C. Radhakrishna and K.P. Rao: J. Mater. Sci., 1997, vol. 32, pp. 1977–84.

    Article  CAS  Google Scholar 

  9. S. Yang, W. Huang, W. Liu, M. Zhong, and Y. Zhou: Acta Mater., 2002, vol. 50, pp. 315–25.

    CAS  Google Scholar 

  10. R.F. Li, Z.G. Li, J. Huang, and Y.Y. Zhu: Appl. Surf. Sci., 2012, vol. 258, pp. 7956–61.

    Article  CAS  Google Scholar 

  11. X. Cao, B. Rivaux, M. Jahazi, J. Cuddy, and A. Birur: J. Mater. Sci., 2009, vol. 44, pp. 4557–71.

    Article  CAS  Google Scholar 

  12. R. Cozar and A. Pineau: Metall. Trans. B, 1973, vol. 4B, pp. 47–59.

    Google Scholar 

  13. Y.C. Zhang, Z.G. Li, P.L. Nie, and Y.X. Wu: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 708–16.

    Article  Google Scholar 

  14. S.A. Nalawade, M. Sundararaman, J.B. Singh, A. Verma, and R. Kishore: Mater. Sci. Eng. A, 2010, vol. 527A, pp. 2906–09.

    Google Scholar 

  15. S. Azadian, L.Y. Wei, and R. Warren: Mater. Character., 2004, vol. 53, pp. 7–16.

    Article  CAS  Google Scholar 

  16. M. Braic, V. Braic, M. Balaceanu, A. Vladescu, C.N. Zoita, C.P. Lungu, C.E.A. Grigorescu, E. Grigore, and C. Logoftu: Surf. Coat. Technol., 2011, vol. 205, pp. S209–S213.

    Article  CAS  Google Scholar 

  17. K. Hajmrle, R. Angers, and G. Dufour: Metall. Trans. A, 1982, vol. 13A, pp. 5–12.

    CAS  Google Scholar 

  18. Y.C. Zhang, Z.G. Li, P.L. Nie, and Y.X Wu: Opt. Laser Technol., 2013, vol. 52, pp. 30–36.

    Article  CAS  Google Scholar 

  19. K.S. Cruz, J.E. Spinelli, I.L. Ferreira, N. Cheung, and A. Garcia: Mater. Chem. Phys., 2008, vol. 109, pp. 87–98.

    Article  CAS  Google Scholar 

  20. H. Sehitoglu, T. Smith, X. Qing, H. Maier, and J. Allison: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 139–51.

    Article  CAS  Google Scholar 

  21. Y. Tan and H. Wang: J. Mater. Sci., 2012, vol. 47, pp. 5308–16.

    Article  CAS  Google Scholar 

  22. C.Y. Cui, Z.X. Guo, Y.H. Liu, Q.Q. Xie, Z. Wang, J.D. Hu, and Y. Yao: Opt. Laser Technol., 2007, vol. 39, pp. 1544–50.

    Article  CAS  Google Scholar 

  23. P. Yi, Y.C. Liu, Y.J. Shi, H. Jang, and G.D. Lun: Opt. Laser Technol., 2011, vol. 43, pp. 1411–19.

    Article  CAS  Google Scholar 

  24. J.N. DuPont, C.V. Robino, J.R. Michael, M.R. Notis, and A.R. Marder: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2785–96.

    Article  CAS  Google Scholar 

  25. G. Knorovsky, M. Cieslak, T. Headley, A. Romig, and W. Hammetter: Metall. Trans. A, 1989, vol. 20A, pp. 2149–58.

    CAS  Google Scholar 

  26. Z. Sun and C. Liu: Diffusion and Phase Transformation in Alloy, Northeast University Press, Shengyang, 2002, pp. 126–33.

    Google Scholar 

  27. T. Antonsson and H. Fredriksson: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 85–96.

    Article  CAS  Google Scholar 

  28. H. Fredriksson and T. Emi: Mater. Trans. JIM, 1998, vol. 39, pp. 292–301.

    CAS  Google Scholar 

  29. D.A. Porter, K. Easterling, and M. Sherif: Phase Transformations in Metals and Alloys, CRC Press, Boca Raton, FL, 2009, pp. 314–17.

    Google Scholar 

Download references

Acknowledgments

This research was funded by the financial support of the Ministry of Science and Technology of the People’s Republic of China (Grant No. 2009DFB50350) and the National Natural Science Foundation of China (Grant No. 50971091).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaocheng Zhang.

Additional information

Manuscript submitted November 21, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Li, Z., Nie, P. et al. Effect of Cooling Rate on the Microstructure of Laser-Remelted INCONEL 718 Coating. Metall Mater Trans A 44, 5513–5521 (2013). https://doi.org/10.1007/s11661-013-1903-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1903-8

Keywords

Navigation