Skip to main content
Log in

Electrodeposited MCrAlY Coatings for Gas Turbine Engine Applications

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Electrolytic codeposition is a promising alternative process for fabricating MCrAlY coatings. The coating process involves two steps, i.e., codeposition of CrAlY-based particles and a metal matrix of Ni, Co, or (Ni,Co), followed by a diffusion heat treatment to convert the composite coating to the desired MCrAlY microstructure. Despite the advantages such as low cost and non-line-of-sight, this coating process is less known than electron beam-physical vapor deposition and thermal spray processes for manufacturing high-temperature coatings. This article provides an overview of the electro-codeposited MCrAlY coatings for gas turbine engine applications, highlighting the unique features of this coating process and some important findings in the past 30 years. Challenges and research opportunities for further optimization of this type of MCrAlY coatings are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G.W. Goward, Surf. Coat. Technol. 108–109, 73 (1998).

    Article  Google Scholar 

  2. J.H. Wood and E.H. Goldman, Superalloys II, ed. C.T. Sims, N.S. Stoloff, and W.C. Hagel (Hoboken: Wiley, 1987), p. 359.

    Google Scholar 

  3. J.R. Nicholls, MRS Bull. 28, 659 (2003).

    Article  Google Scholar 

  4. D.P. Whittle and J. Stringer, Philos. Trans. R. Soc. Lond. A 295, 309 (1980).

    Article  Google Scholar 

  5. B.A. Pint, Proceedings of the John Stringer Symposium, ed. P.F. Tortorelli and P.Y. Hou (Materials Park: ASM, 2003), pp. 9–19.

    Google Scholar 

  6. R. Mévrel, Mater. Sci. Eng. A A120, 13 (1989).

    Article  Google Scholar 

  7. J. Foster, B.P. Cameron, and J.A. Carew, Trans. Inst. Met. Finish. 63, 115 (1985).

    Google Scholar 

  8. F.J. Honey, E.C. Kedward, and V. Wride, J. Vac. Sci. Technol. A A4, 2593 (1986).

    Article  Google Scholar 

  9. M. Thoma, M. Bindl, and J. Linska, U.S. Patent 4,895,625, 1990.

  10. M. Saremi and M. Bahraini, Trans. Inst. Met. Finish. 81, 24 (2003).

    Google Scholar 

  11. R. Morbioli, Mater. Sci. Eng. A A121, 373 (1989).

    Article  Google Scholar 

  12. D. Fayeulle, J. Henon, and R. Morbioli, U.S. Patent 5,057,379, 1991.

  13. X. Lu, R. Zhu, and Y. He, Oxid. Met. 43, 353 (1995).

    Article  Google Scholar 

  14. M.-P. Bacos, B. Girard, P. Josso, and C. Rio, Surf. Coat. Technol. 162, 248 (2003).

    Article  Google Scholar 

  15. S. Mercier, I. Giovannetti, P. Josso, and M.-P. Bacos, Surf. Coat. Technol. 201, 120 (2006).

    Article  Google Scholar 

  16. C.T.J. Low, R.G.A. Wills, and F.C. Walsh, Surf. Coat. Technol. 201, 371 (2006).

    Article  Google Scholar 

  17. F.C. Walsh and C. Ponce de Leon, Trans. Inst. Metal Finish. 92, 83 (2014).

    Article  Google Scholar 

  18. J. Foster and B. Cameron, Trans. Inst. Met. Finish. 54, 178 (1976).

    Google Scholar 

  19. E.C. Lee and J.W. Choi, Surf. Coat. Technol. 148, 234 (2001).

    Article  Google Scholar 

  20. I. Garcia, J. Fransaer, and J.P. Celis, Surf. Coat. Technol. 148, 171 (2001).

    Article  Google Scholar 

  21. S.C. Wang and W.C.J. Wei, Mater. Chem. Phys. 78, 574 (2003).

    Article  Google Scholar 

  22. C.B. Wang, D.L. Wang, W.X. Chen, and Y.Y. Wang, Wear 253, 563 (2002).

    Article  Google Scholar 

  23. A. Hovestad, R.J.C.H.L. Heesen, and L.J.J. Janssen, J. Appl. Electrochem. 29, 331 (1999).

    Article  Google Scholar 

  24. M. Ghorbani, M. Mazaheri, K. Khangholi, and Y. Kharazi, Surf. Coat. Technol. 148, 71 (2001).

    Article  Google Scholar 

  25. A. Feuerstein, J. Knapp, T. Taylor, A. Ashary, A. Bolcavage, and N. Hitchman, J. Therm. Spray Technol. 17, 199 (2008).

    Article  Google Scholar 

  26. J.R. Roos, J.-P. Celis, J. Fransaer, and C. Buelens, J. Miner. Met. Soc. 42, 60 (1990).

    Article  Google Scholar 

  27. A. Hovestad and L.J.J. Jannsen, J. Appl. Electrochem. 25, 519 (1995).

    Article  Google Scholar 

  28. M. Musiani, Electrochim. Acta 45, 3397 (2000).

    Article  Google Scholar 

  29. J.E. Restall, Superalloys 1984, ed. M. Gell, C.S. Kortovich, R.H. Bricknell, W.B. Kent, and J.F. Radavich (Warrendale: TMS, 1984), pp. 721–730.

    Chapter  Google Scholar 

  30. J. Foster, F.J. Honey, E.C. Kedward, and J.E. Restall, U.K. Patent GB2167446 (1986), also U.S. Patent 4,789,441, 1988.

  31. D.S. Rickerby and M.R. Winstone, Mater. Manuf. Process 7, 495 (1992).

    Article  Google Scholar 

  32. R.A. Neff, G.B. Katz, B. Nagaraj, and R. Tarvin, in Paper presented at the Proc. ASME Turbo Expo 2004, ASME Paper GT-2004-53461.

  33. T. Taylor and J. Foster, Surf. Coat. Technol. 201, 3819 (2006).

    Article  Google Scholar 

  34. G.A. Di Bari, Modern Electroplating, 5th ed., ed. M. Schlesinger and M. Paunovic (Hoboken: Wiley, 2010), p. 79.

    Google Scholar 

  35. S.S. Abd El-Rehim, A.M. Abd El-Halim, and M.M. Osman, J. Appl. Electrochem 15, 107 (1985).

    Article  Google Scholar 

  36. E. Gómez, J. Ramirez, and E. Vallés, J. Appl. Electrochem. 28, 71 (1998).

    Article  Google Scholar 

  37. B.L. Bates, J.C. Witman, and Y. Zhang, Mater. Manuf. Process, in press (2015).

  38. A.V. Put, M.C. Lafont, D. Oquab, A. Raffaitin, and D. Monceau, Surf. Coat. Technol. 205, 717 (2010).

    Article  Google Scholar 

  39. X. Yang, X. Peng, C. Xu, and F. Wang, J. Electrochem. Soc. 156, C167 (2009).

    Article  Google Scholar 

  40. A. Hovestad, and L.J.J. Janssen, Modern Aspects of Electrochemistry, ed. B.E. Conway, C.G. Vayenas, R.E. White, and M.E. Gamboa-Adelco (New York: Kluwer Academic/Plenum Publishers, 2005), pp. 475–532.

    Chapter  Google Scholar 

  41. H. Liu and W. Chen, Surf. Coat. Technol. 191, 341 (2005).

    Article  Google Scholar 

  42. Q.Y. Feng, T.J. Li, H.Y. Yue, K. Qi, F.D. Bai, and J.Z. Jin, Appl. Surf. Sci. 254, 2262 (2008).

    Article  Google Scholar 

  43. B. Bakhit and A. Akbari, J. Alloys Compd. 560, 92 (2013).

    Article  Google Scholar 

  44. B.L. Bates, L.Z. Zhang, and Y. Zhang, Surf. Eng. 31, 202 (2015).

    Article  Google Scholar 

  45. D.F. Susan, K. Barmak, and A.R. Marder, Thin Solid Films 307, 133 (1997).

    Article  Google Scholar 

  46. M. Viswanathan and K.S.G. Doss, Met. Finish. 70, 83 (1972).

    Google Scholar 

  47. E.C. Kedward, C.A. Addison, F.J. Honey, and J. Foster, U.K. Patent GB2014189, 1979.

  48. Y. Zhang, Tennessee Technological University, unpublished research, 2015.

  49. I. Keller, D. Naumenko, W.J. Quadakkers, R. Vaßen, and L. Singheiser, Surf. Coat. Technol. 215, 24 (2013).

    Article  Google Scholar 

  50. B. Nagaraj, G. Katz, A.F. Maricocchi, and M. Rosenzweig, in Paper presented at the International Gas Turbine and Aeroengine Congress and Exposition, ASME Paper 95-GT-360, Houston, TX, 5–8 June 1995.

  51. A.V. Put, D. Oquab, E. Péré, A. Raffaitin, and D. Monceau, Oxid. Met. 75, 247 (2011).

    Article  Google Scholar 

  52. A. Raffaitin, F. Crabos, E. Andrieu, and D. Monceau, Surf. Coat. Technol. 201, 3829 (2006).

    Article  Google Scholar 

  53. A. Raffaitin, D. Monceau, E. Andrieu, and F. Crabos, Acta Mater. 54, 4473 (2006).

    Article  Google Scholar 

  54. D. Monceau and D. Poquillon, Oxid. Met. 61, 143 (2004).

    Article  Google Scholar 

  55. R. Goti, M. Bétaille-Francoual, E. Hourcastagné, B. Viguier, and F. Crabos, Oxid. Met. 81, 105 (2014).

    Article  Google Scholar 

  56. R. Oriňáková, A. Turoňová, D. Kladeková, M. Gálová, and R.M. Smith, J. Appl. Electrochem. 36, 957 (2006).

    Article  Google Scholar 

  57. R. Brugger, Nickel Plating, 1st ed. (Molesey, Surrey: Clare o’ Molesey Ltd., 1970), pp. 46–47.

    Google Scholar 

  58. H.M. Heiling, Metallurgy 14, 549 (1960).

    Google Scholar 

  59. Y. Ikeda, K. Nii, and K. Yoshihara, Trans. Jpn. Inst. Met. 24, 207 (1983).

    Google Scholar 

  60. A.W. Funkenbusch, J.G. Smeggil, and N.S. Bornstein, Metall. Trans. A 16A, 1164 (1985).

    Article  Google Scholar 

  61. J.G. Smeggil, Mater. Sci. Eng. 87, 261 (1987).

    Article  Google Scholar 

  62. J.L. Smialek, Metall. Mater. Trans. A 18A, 164 (1987).

    Article  Google Scholar 

  63. J.L. Smialek, D.T. Jayne, J.C. Schaeffer, and W.H. Murphy, Thin Solid Films 235, 285 (1994).

    Article  Google Scholar 

  64. B.A. Pint, Oxid. Met. 45, 1 (1996).

    Article  Google Scholar 

  65. J.L. Smialek, JOM 52, 22 (2000).

    Article  Google Scholar 

  66. W.Y. Lee, Y. Zhang, I.G. Wright, B.A. Pint, and P.K. Liaw, Metall. Mater. Trans. A 29A, 833 (1998).

    Article  Google Scholar 

  67. B.A. Pint, I.G. Wright, W.Y. Lee, Y. Zhang, K. Prüβner, and K.B. Alexander, Mater. Sci. Eng. A A245, 201 (1998).

    Article  Google Scholar 

  68. J.A. Haynes, B.A. Pint, K.L. More, Y. Zhang, and I.G. Wright, Oxid. Met. 58, 513 (2002).

    Article  Google Scholar 

  69. B.A. Pint, K.L. More, and I.G. Wright, Mater. High Temp. 20, 375 (2003).

    Article  Google Scholar 

  70. K.A. Unocic and B.A. Pint, Surf. Coat. Technol. 237, 8 (2013).

    Article  Google Scholar 

  71. D.K. Gupta, and D.S. Duvall, Superalloys 1984, ed. M. Gell, C.S. Kortovich, R.H. Bricknell, W.B. Kent, and J.F. Radavich (Warrendale: TMS, 1984), pp. 711–720.

    Chapter  Google Scholar 

  72. D. Naumenko, V. Shemet, L. Singheiser, and W.J. Quadakkers, J. Mater. Sci. 44, 1687 (2009).

    Article  Google Scholar 

  73. R.W. Smith, Thin Solid Films 84, 59 (1981).

    Article  Google Scholar 

  74. G.W. Meetham, Mater. Sci. Technol. 2, 290 (1984).

    Article  Google Scholar 

  75. T.A. Taylor and D.F. Bettridge, Surf. Coat. Technol. 86–87, 9 (1996).

    Article  Google Scholar 

  76. S. Bose, High Temperature Coatings (Oxford: Butterworth-Heinemann, 2007), pp. 122–124.

    Google Scholar 

  77. N. Czech, F. Schmitz, and W. Stamm, Mater. Manuf. Process. 10, 1021 (1995).

    Article  Google Scholar 

  78. O. Trunova, T. Beck, and L. Singheiser, Mater. High Temp. 30, 62 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

The research was funded by the U.S. Department of Energy, University Turbine Systems Research (UTSR) Program through Award No. DE-FE0007332, with Dr. Patcharin Burke as the Program Manager. The authors also acknowledge the additional support from the Office of Naval Research through Grant No. N00014-14-1-0341, with Dr. David A. Shifler as the Technical Monitor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y. Electrodeposited MCrAlY Coatings for Gas Turbine Engine Applications. JOM 67, 2599–2607 (2015). https://doi.org/10.1007/s11837-015-1640-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1640-0

Keywords

Navigation