Skip to main content
Log in

Electrochemical codeposition of inert particles in a metallic matrix

  • Review
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A survey on electrochemical codeposition of inert particles in a metallic matrix is given. Particles held in suspension in an electroplating bath are codeposited with the metal during electrodeposition. The particles used are inert to the bath and can be of different types, that is, pure metals, ceramics or organic materials. Combining this variety of types of particles with the different electrodeposited metals, electrochemical codeposition enables the production of a large range of composite materials with unique properties. Many experimental factors were found to influence the codeposition process, which led to some understanding of the mechanism. Models to predict the codeposition rate were developed, but were only partly successful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

constant in Tafel equation for metal deposition (V−1)

B, B 1, B2 :

constants in Tafel equation for particle deposition (V−1)

C ,C 0 :

concentration in bulk and at the cathode surface, respectively (mol m−3)

C * :

number of ions or particles per unit volume in the bulk bath (m−3)

Co :

dimensionless constant

Cz K :

binomial constant

Dm :

double layer dimensionless number

F :

Faraday's constant (C mol−1)

g :

acceleration due to gravity constant (m s−2)

Gq :

particle embedment dimensionless number

H :

hydrodynamic coefficient

i :

current density (A m−2)

i 0 :

exchange current density (A m−2)

i tr :

transition current density (A m−2)

k :

amount of adsorbed ions on particle that need to be reduced

k * :

Langmuir adsorption constant

k 1, k2, k3 :

rate constants for particle deposition (m4 mol−1 s−1)

K :

amount of ions adsorbed on a particle

M :

molecular weight (kg mol−1)

n :

valence of electrodeposited metal

N :

number of ions or particles crossing the diffusion layer per unit time and surface area (s−1 m−2)

p i :

probability for an ion to be reduced

P :

probability for a particle to become incorporated

r p :

particle radius (m)

Re :

Reynolds number

Sh′:

modified Sherwood number

Sx :

dimensionless number for bath particle concentration

t :

time (s)

v 0 :

constant for particle deposition (m s−1)

V :

deposition rate (m s−1)

W :

weight (kg)

α:

measure of the interaction between free and adsorbed ions due to current density

β:

volume percent of embedded particles

δ:

diffusion layer thickness (m)

ζ:

ζ-potential (V)

ϑ:

strong adsorption coverage

v :

solution viscosity (kg m−1 s−1)

η:

overvoltage (V)

Γ:

current efficiency

ρ:

density (kg m−3)

σ:

loose adsorption coverage

e:

solution

m:

metal

p:

particle hydrogen

References

  1. J. R. Roos, J. P. Celis, J. Fransaer and C. Buelens,J. Metals 42 (1990) 60.

    Google Scholar 

  2. J. P. Celis, J. R. Roos, C. Buelens and J. Fransaer,Trans. Inst. Met. Finish. 69 (1991) 133.

    Google Scholar 

  3. C. Buelens, J. Fransaer, J. P. Celis and J. R. Roos,Bull. Electrochem. 8 (1992) 371.

    Google Scholar 

  4. J. Fransaer, J. P. Celis, J. R. Roos,Met. Finish. 91 (1993) 97.

    Google Scholar 

  5. C. G. Fink and J. D. Prince,Trans. Am. Electrochem. Soc. 54 (1928) 315.

    Google Scholar 

  6. J. R. Roos and J. P. Celis, Proceedings AESF'84, New York (1984) p. 1.

  7. J. R. Roos, Proceedings INCEF'86, Bangalore (1988) p. 382.

  8. V. P. Greco and W. Baldauf,Plating 55 (1968) 250.

    Google Scholar 

  9. N. Periene, A. Cesuniene and L. Taicas,Plat. Surf. Finish. 80 (1993) 73.

    Google Scholar 

  10. Y. S. Chang and J. Y. Lee,Mater. Chem. Phys. 20 (1988) 309.

    Google Scholar 

  11. A. E. Grazen,Iron Age 183 (1959) 94.

    Google Scholar 

  12. F. Mathis, B. Pierragi, B. Lavelle and B. Criqui, Proceedings 24th ISATA, Florence (1991) p. 171.

  13. T. W. Tomaszewski, R. J. Clauss and H. Brown,Proc. Am. Electroplaters Soc. 50 (1963) 169.

    Google Scholar 

  14. G. N. K. Ramesh Bapu and M. Mohammed Yusuf,Mat. Chem. Phys. 36 (1993) 134.

    Google Scholar 

  15. S. W. Watson,J. Electrochem. Soc. 140 (1993) 2235.

    Google Scholar 

  16. R. V. Williams and P. W. Martin,Trans. Inst. Met. Finish. 42 (1964) 182.

    Google Scholar 

  17. M. Keddam, S. Senyarich, H. Takenouti and P. Bernard,J. Appl. Electrochem. 24 (1994) 1037.

    Google Scholar 

  18. A. Anani, Z. Mao, S. Srinivasan and A. J. Appleby,ibid. 21 (1991) 683.

    Google Scholar 

  19. F. K. Sautter,J. Electrochem. Soc. 110 (1963) 557.

    Google Scholar 

  20. N. Guglielmi,ibid. 119 (1972) 1009.

    Google Scholar 

  21. R. Bazard and P. J. Boden,Trans. Inst. Met. Finish. 50 (1972) 63.

    Google Scholar 

  22. J. P. Celis, PhD thesis, Catholic University, Leuven (1976).

    Google Scholar 

  23. J. P. Celis and J. R. Roos,J. Electrochem. Soc. 124 (1977) 1508.

    Google Scholar 

  24. R. Narayama and B. H. Narayana,ibid. 128 (1981) 1704.

    Google Scholar 

  25. R. Narayan and S. Chattopadhyay,Surf. Technol. 16 (1982) 227.

    Google Scholar 

  26. Y. Suzuki and O. Asai,J. Electrochem. Soc. 134 (1987) 1905.

    Google Scholar 

  27. H. Guo, Q. Qin and A. Wang,Proc.-Electrochem. Soc. 88–18 (1988) 46.

    Google Scholar 

  28. J. W. Graydon and D. W. Kirk,J. Electrochem. Soc. 137 (1990) 2061.

    Google Scholar 

  29. M. Verelst, J. P. Bonino and A. Rousset,Mat. Sci. Eng. A135 (1991) 51.

    Google Scholar 

  30. H. Hayashi, S. Izumi and I. Tari,J. Electrochem. Soc. 140 (1993) 362.

    Google Scholar 

  31. P. K. N. Bartlett, Industrial training report AKZO, Arnhem, (1980) pp. 10–39.

  32. E. A. Brandes and D. Goldthorpe,Metallurgia 76 (1967) 195.

    Google Scholar 

  33. T. W. Tomaszewski, L. C. Tomaszewski and H. Brown,Plating 56 (1969) 1234.

    Google Scholar 

  34. C. C. Lee and C. C. Wan,J. Electrochem. Soc. 135 (1988) 1930.

    Google Scholar 

  35. A. M. J. Kariapper and J. Foster,Trans. Inst. Met. Finish. 52 (1974) 87.

    Google Scholar 

  36. G. R. Lakshminarayanan, E. S. Chen and F. K. Sautter,Plat. Surf. Finish. 63 (1976) 38.

    Google Scholar 

  37. C. Buelens, PhD thesis, Catholic University, Leuven (1984).

    Google Scholar 

  38. S. H. Yeh and C. C. Wan,J. Appl. Electrochem. 24 (1994) 993.

    Google Scholar 

  39. C. Buelens, J. P. Celis and J. R. Roos,ibid. 13 (1983) 541.

    Google Scholar 

  40. J. P. Celis, J. R. Roos, C. Buelens,J. Electrochem. Soc. 134 (1987) 1402.

    Google Scholar 

  41. B. J. Hwang and C. S. Hwang,J. Electrochem. Soc. 140 (1993) 979.

    Google Scholar 

  42. S. W. Watson and R. P. Walters,ibid. 138 (1991) 3633.

    Google Scholar 

  43. Y. Suzuki, M. Wajima and O. Asai,ibid. 133 (1986) 259.

    Google Scholar 

  44. P. J. Sonneveld, W. Visscher and E. Barendrecht,J. Appl. Electrochem. 20 (1990) 563.

    Google Scholar 

  45. D. W. Gibbons, R. H. Muller and C. W. Tobias,J. Electrochem. Soc. 138 (1991) 3255.

    Google Scholar 

  46. P. R. Webb and N. L. Robertson,ibid. 141 (1994) 669.

    Google Scholar 

  47. J. Fransaer, J. P. Celis and J. R. Roos,ibid. 139 (1992) 413.

    Google Scholar 

  48. J. W. Graydon and D. W. Kirk,Can. J. Chem. Eng. 69 (1991) 564.

    Google Scholar 

  49. K. Helle, Proceedings, 4th International Conference in Organic Coating Science and Technology, Athens (1978) 264.

  50. K. Helle, Report AKZO Research, Arnhem (1993).

  51. K. Meguno, T. Ushida, T. Hiraoka and K. Esumi,Bull. Chem. Soc. Jpn. 60 (1987) 89.

    Google Scholar 

  52. J. C. Whithers,Prod. Fin. 26 (1962) 62.

    Google Scholar 

  53. R. S. Saifullin and R. G. Khalilova,J. Appl. Chem. USSR. 43 (1970) 1274.

    Google Scholar 

  54. M. Degrez and R. Winand,Electrochem. Acta 29 (1984) 365.

    Google Scholar 

  55. Z. Adamczyk,Colloids and Surfaces 35 (1989) 283.

    Google Scholar 

  56. J. L. Valdes,J. Electrochem. Soc. 134 (1987) 223C.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hovestad, A., Janssen, L.J.J. Electrochemical codeposition of inert particles in a metallic matrix. J Appl Electrochem 25, 519–527 (1995). https://doi.org/10.1007/BF00573209

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00573209

Keywords

Navigation