Skip to main content
Log in

Failure mechanisms of thermal barrier coatings on MCrAlY-type bondcoats associated with the formation of the thermally grown oxide

  • Interface Science in Thermal Barrier Coatings
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of the thermally grown oxide (TGO) formation on the lifetime of the thermal barrier coatings (TBC) with MCrAlY-bondcoats (BC) is reviewed. A number of factors affecting the TGO-formation and TBC-failure are discussed including the coating microstructure, geometrical (coating roughness and thickness) and processing parameters. Under given testing conditions for a specific EB-PVD-TBC-system forming a flat, uniform alumina TGO a critical TGO-thickness for TBC-failure can be defined. This TGO-morphology is, however, not necessarily optimum for obtaining long TBC-lifetime, which can be extended by formation of TGO’s with an uneven TGO/BC interface. In contrast, APS-TBC-systems are prone to formation of intrinsically inhomogeneous TGO-morphologies. This is attributed to non-uniform depletion of Y and Al underneath rough MCrAlY-surfaces as well as due to the commonly observed repeated-cracking/re-growth of the TGO during temperature cycling. The latter phenomenon depends on the exposure temperature and the mechanical properties of the APS-TBC. In both types of TBC-systems the TGO-formation and TBC-lifetime appear to be very sensitive to the manufacturing parameters, such as vacuum quality during bondcoat spraying and temperature regime of the bondcoat vacuum heat-treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Goward GW (1998) Surf Coat Technol 108–109(1–3):73

    Article  Google Scholar 

  2. Gleeson B (2006) J Propul Power 22–2:375

    Article  Google Scholar 

  3. Evans AG, Mumm DR, Hutchinson JW, Meier GH, Pettit FS (2001) Prog Mater Sci 46:505

    Article  Google Scholar 

  4. Quadakkers WJ, Tyagi AK, Clemens D, Anton R, Singheiser L (1999) In: Hampikian JM, Dahotre NB (eds) Elevated temperature coatings: surface and technology III. The Minerals, Metals & Materials Society, pp 119–130

  5. Niranatlumpong P, Ponton CB, Evans HE (2000) Oxid Met 53(3–4):241

    Article  CAS  Google Scholar 

  6. Busso EP, Wright L, Evans HE et al (2007) Acta Mater 55:1491

    Article  CAS  Google Scholar 

  7. Tolpygo VK, Clarke DR, Murphy KS (2001) Surf Coat Technol 146–147:124

    Article  Google Scholar 

  8. Evans HE, Strawbridge A, Carolan RA, Ponton CB (1997) Mater Sci Eng A 225:1

    Article  Google Scholar 

  9. Quadakkers WJ, Shemet V, Sebold D, Anton R, Wessel E, Singheiser L (2005) Surf Coat Technol 199(1):77

    Article  CAS  Google Scholar 

  10. Janakiraman R, Meier GH, Pettit FS (1999) Metall Mater Trans A 30:2905

    Article  Google Scholar 

  11. Pint BA (2003) J Amer Ceram Soc 86(4):686

    Article  CAS  Google Scholar 

  12. Nijdam TJ, Marijnissen GH, Vergeldt E, Kloosterman AB, Sloof WG (2006) Oxid Met 66:269

    Article  CAS  Google Scholar 

  13. Schulz U, Menzebach M, Leyens C, Yang YQ (2001) Surf Coat Technol 146–147(5/6):117

    Article  Google Scholar 

  14. Subanovic M, Sebold D, Vassen R, Wessel E, Naumenko D, Singheiser L, Quadakkers WJ (2008) Mater Corros 59(6):463

    Article  CAS  Google Scholar 

  15. Wessel E, Kochubey V, Naumenko D, Niewolak L, Singheiser L, Quadakkers WJ (2004) Scripta Mater 51(10):987

    Article  CAS  Google Scholar 

  16. Mercer C, Faulhaber S, Yao N, McIlwrath K, Fabrichnaya O (2006) Surf Coat Technol 201:1495

    Article  CAS  Google Scholar 

  17. Evans AG, Crumley GB, Demaray RE (1983) Oxid Met 20(5/6):193

    Article  Google Scholar 

  18. Naumenko D, Gleeson B, Wessel E, Singheiser L, Quadakkers WJ (2007) Metall Mater Trans 38A:2974

    Article  CAS  Google Scholar 

  19. Hsueh CH, Haynes JA, Lance MJ et al (1999) J Amer Ceram Soc 82(4):1073

    Article  CAS  Google Scholar 

  20. Tang F, Schoenung J (2005) Scripta Mater 52:905

    Article  CAS  Google Scholar 

  21. Ahrens M, Vaßen R, Stoever D (2002) Surf Coat Technol 161:26

    Article  CAS  Google Scholar 

  22. Trunova O, Beck T, Herzog R, Steinbrech RW, Singheiser L (2008) Surf Coat Technol 202:5027

    Article  CAS  Google Scholar 

  23. Fox P, Tatlock GJ (1989) Mater Sci Technol 5:816

    Article  CAS  Google Scholar 

  24. Czech N, Schmitz F, Stamm W (1994) Surf Coat Technol 68–69:17

    Article  Google Scholar 

  25. Massalski TB (1996) ASM binary alloy phase diagrams. ASM International, Materials Park, OH

    Google Scholar 

  26. Achar DRG, Munoz-Arroyo R, Singheiser L, Quadakkers WJ (2004) Surf Coat Technol 187:272

    Article  CAS  Google Scholar 

  27. Muñoz-Arroyo R, Clemens D, Tietz F, Anton R, Quadakkers J, Singheiser L (2001) Mater Sci Forum 369–372:165

    Article  Google Scholar 

  28. Täck U (2004) The influence of cobalt and rhenium on the behaviour of MCrAlY coatings (PhD thesis) Tech. Univ. Freiberg 25:151, 169

  29. Toscano J, Gil A, Hüttel T, Wessel E, Naumenko D, Singheiser L, Quadakkers WJ (2007) Surf Coat Technol 202:603

    Article  CAS  Google Scholar 

  30. Lechner C, Seume J (eds) (2003) Stationaere Gasturbinen. Springer-Verlag, Berlin Heidelberg, Germany, p 749

    Google Scholar 

  31. Jansson B, Schalin M, Selleby M, Sundaman B (1993) In: Bale CW, Irins GA (eds) Computer software in chemical and extractive metallurgy. Canadian Institute of Metals, Quebec, p 57

  32. Saunders N (2000) Ni-DATA information. Thermotech Ltd., Surrey Technology Centre, Surrey, UK

    Google Scholar 

  33. Echsler H, Renusch D, Schütze M (2004) Mater Sci Technol 20:307

    Article  CAS  Google Scholar 

  34. Quadakkers WJ, Holzbrecher H, Briefs KG, Beske H (1989) Oxid Met 32(12):67

    Article  CAS  Google Scholar 

  35. Pint BA, Martin JR, Hobbs LW (1993) Oxid Met 39:167

    Article  CAS  Google Scholar 

  36. Reddy KPR, Smialek JL, Cooper AR (1982) Oxid Met 17(5/6):429

    Article  CAS  Google Scholar 

  37. Karadge M, Zhao X, Preuss M, Xiao P (2006) Scripta Mater 54:639

    Article  CAS  Google Scholar 

  38. Toscano J, Wessel E, Vassen R, Naumenko D, Singheiser L, Quadakkers WJ (2008) Mater Corros 59(6):501

    Article  CAS  Google Scholar 

  39. Kofstad P (1988) High temperature corrosion. Elsevier, London

    Google Scholar 

  40. Yanar NM, Pettit FS, Meier GH (2006) Metall Mater Trans 37A:1563

    Article  CAS  Google Scholar 

  41. Gil A, Shemet V, Vassen R, Subanovic M, Toscano J, Naumenko D, Singheiser L, Quadakkers WJ (2006) Surf Coat Technol 201:3824

    Article  CAS  Google Scholar 

  42. Toscano J, Vaßen R, Gil A, Subanovic M, Naumenko D, Singheiser L, Quadakkers WJ (2006) Surf Coat Technol 201:3906

    Article  CAS  Google Scholar 

  43. Nijdam TJ, Sloof WG (2008) Oxid Met 69:1

    Article  CAS  Google Scholar 

  44. Gudmundsson B, Jacobson BE (1989) Thin Solid Films 173(1):99

    Article  CAS  Google Scholar 

  45. Nijdam TJ, Jeurgens LPH, Chen JH, Sloof WG (2005) Oxid Met 64(5/6):355

    Article  CAS  Google Scholar 

  46. Schulz U, Bernardi O, Ebach-Stahl A et al (2008) Surf Coat Technol 203:160

    Article  CAS  Google Scholar 

  47. Lau H, Leyens C, Schulz U, Friedrich C (2003) Surf Coat Technol 165:217

    Article  CAS  Google Scholar 

  48. Davis JR (ed) (1997) Heat resistant materials, ASM specialty handbook. ASM International, Materials Park, OH, p 305

  49. Ajdelsztajn L, Hulbert D, Mukherjeea A, Schoenung JM (2007) Surf Coat Technol 201:9462

    Article  CAS  Google Scholar 

  50. Wasilkowska A, Bartsch M, Messerschmidt U et al (2003) J Mater Process Technol 133:218

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the following colleagues in the Institute for Energy Research of the Forschungszentrum Jülich for assistance in the materials procurement and experimental work: R. Vassen, K·H. Rauwald, H. Cosler, E. Wessel, M. Subanovic, and J. Toscano. Part of the present work was funded by the German Research Foundation (Grant No. NA-615-1) and German federal ministry for economy and technology (Grant No. 0326888D).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Naumenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naumenko, D., Shemet, V., Singheiser, L. et al. Failure mechanisms of thermal barrier coatings on MCrAlY-type bondcoats associated with the formation of the thermally grown oxide. J Mater Sci 44, 1687–1703 (2009). https://doi.org/10.1007/s10853-009-3284-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3284-3

Keywords

Navigation