, Volume 66, Issue 2, pp 245–254 | Cite as

Applications of Polymer Matrix Syntactic Foams

  • Nikhil Gupta
  • Steven E. Zeltmann
  • Vasanth Chakravarthy Shunmugasamy
  • Dinesh Pinisetty


A collection of applications of polymer matrix syntactic foams is presented in this article. Syntactic foams are lightweight porous composites that found their early applications in marine structures due to their naturally buoyant behavior and low moisture absorption. Their light weight has been beneficial in weight sensitive aerospace structures. Syntactic foams have pushed the performance boundaries for composites and have enabled the development of vehicles for traveling to the deepest parts of the ocean and to other planets. The high volume fraction of porosity in syntactic foams also enabled their applications in thermal insulation of pipelines in oil and gas industry. The possibility of tailoring the mechanical and thermal properties of syntactic foams through a combination of material selection, hollow particle volume fraction, and hollow particle wall thickness has helped in rapidly growing these applications. The low coefficient of thermal expansion and dimensional stability at high temperatures are now leading their use in electronic packaging, composite tooling, and thermoforming plug assists. Methods have been developed to tailor the mechanical and thermal properties of syntactic foams independent of each other over a wide range, which is a significant advantage over other traditional particulate and fibrous composites.


  1. 1.
    B.H. Rutz and J.C. Berg, Adv. Colloid Interface Sci. 160, 56 (2012).CrossRefGoogle Scholar
  2. 2.
    G. Hu and D. Yu, Mater. Sci. Eng. A 528, 5177 (2011).CrossRefGoogle Scholar
  3. 3.
    N. Gupta, E. Woldesenbet, R.S. Kishore, and S. Sankaran, J. Mater. Sci. 36, 4485 (2001).CrossRefGoogle Scholar
  4. 4.
    S.R. Kishore and S. Sankaran, Mater. Sci. Eng. A 412, 153 (2005).CrossRefGoogle Scholar
  5. 5.
    L. Zhang and J. Ma, Mater. Sci. Eng. A 574, 191 (2013).CrossRefGoogle Scholar
  6. 6.
    M. Porfiri and N. Gupta, Compos. B Eng. 40, 166 (2009).CrossRefGoogle Scholar
  7. 7.
    S.R. Kishore and S. Sankaran, J. Mater. Sci. 41, 7459 (2006).CrossRefGoogle Scholar
  8. 8.
    R.S. Kishore and S. Sankaran, J. Appl. Polym. Sci. 98, 673 (2005).CrossRefGoogle Scholar
  9. 9.
    R.S. Kishore and S. Sankaran, J. Appl. Polym. Sci. 98, 680 (2005).CrossRefGoogle Scholar
  10. 10.
    N. Gupta and V.C. Shunmugasamy, Mater. Sci. Eng. A 528, 7596 (2011).CrossRefGoogle Scholar
  11. 11.
    M. Porfiri, N. Nguyen, and N. Gupta, J. Mater. Sci. 44, 1540 (2009).CrossRefGoogle Scholar
  12. 12.
    V.C. Shunmugasamy, D. Pinisetty, and N. Gupta, J. Mater. Sci. 47, 5596 (2012).CrossRefGoogle Scholar
  13. 13.
    V. Shabde, K. Hoo, and G.M. Gladysz, J. Mater. Sci. 41, 4061 (2006).CrossRefGoogle Scholar
  14. 14.
    N. Gupta, S. Priya, R. Islam, and W. Ricci, Ferroelectrics 345, 1 (2006).CrossRefGoogle Scholar
  15. 15.
    V.C. Shunmugasamy, D. Pinisetty, and N. Gupta, J. Mater. Sci. accepted fpr publication (2013), doi: 10.1007/s10853-013-7691-0
  16. 16.
    K.C. Yung, B.L. Zhu, T.M. Yue, and C.S. Xie, Compos. Sci. Technol. 69, 260 (2009).CrossRefGoogle Scholar
  17. 17.
    V.C. Shunmugasamy, N. Gupta, N.Q. Nguyen, and P.G. Coelho, Mater. Sci. Eng. A 527, 6166 (2010).CrossRefGoogle Scholar
  18. 18.
    N. Gupta, D. Pinisetty, and V.C. Shunmugasamy, Reinforced Polymer Matrix Syntactic Foams: Effect of Nano and Micro-Scale Reinforcement (New York: Springer, 2013).CrossRefGoogle Scholar
  19. 19.
    B. John and C.P. Reghunadhan Nair, Update on Syntactic Foams (Shropshire: Smithers Rapra Technology, 2010).Google Scholar
  20. 20.
    N. Gupta, E. Woldesenbet, and P. Mensah, Compos. A Appl. Sci. Manuf. 35, 103 (2004).CrossRefGoogle Scholar
  21. 21.
    L. Bardella, A. Sfreddo, C. Ventura, M. Porfiri, and N. Gupta, Mech. Mater. 50, 53 (2012).CrossRefGoogle Scholar
  22. 22.
    National Oceanic and Atmospheric Administration, Accessed 7 Oct 2013.
  23. 23.
    R.L. Poveda, G. Dorogokupets, and N. Gupta, Polym. Degrad. Stab. 98, 2041 (2012).CrossRefGoogle Scholar
  24. 24.
  25. 25.
  26. 26.
  27. 27.
    M.Y. Chen, L.E. Matson, H. Lee, and C. Chen, SPIE Proc., Optic. Mater. Struct. Technol. IV (Bellingham, WA: SPIE, 2009), p. 74250S- 1-9.Google Scholar
  28. 28.
    L.E. Matson and D.H. Mollenhauer, AMPTIAC Q. 8, 67 (2004).Google Scholar
  29. 29.
    S.D. Vining and P.J. Hood, SPIE Proceedings, UV/Optical/IR Space Telescopes: Innovative Technologies and Concepts, ed. H.A. MacEwen (Bellingham, WA: SPIE, 2004).Google Scholar
  30. 30.
    R.L. Van Auken, U.S. patent 4,065,150 A (1977).Google Scholar
  31. 31.
    G.W. Filice and E.H. Hoyt, Jr., U.S. patent 4,819,608A (1989).Google Scholar
  32. 32.
    T.E. Cravens, J. Cell. Plast. 9, 260 (1973).CrossRefGoogle Scholar
  33. 33.
    D.W. Green, J.E. Winandy, and D.E. Kretschmann, Wood Handbook: Wood as an Engineering Material (Madison, WI: Forest Products Laboratory, 1999), pp. 1–45.Google Scholar
  34. 34.
    T.F. Anderson, H.A. Walters, and C.W. Glesner, J. Cell. Plast. 6, 171 (1970).CrossRefGoogle Scholar
  35. 35.
    H. Mohammad and S. Kunigal, Paper presented at the 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Orlando, FL, 12–15 April 2010.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2013

Authors and Affiliations

  • Nikhil Gupta
    • 1
  • Steven E. Zeltmann
    • 1
  • Vasanth Chakravarthy Shunmugasamy
    • 1
  • Dinesh Pinisetty
    • 2
  1. 1.Composite Materials and Mechanics Laboratory, Department of Mechanical and Aerospace EngineeringPolytechnic Institute of New York UniversityBrooklynUSA
  2. 2.The California Maritime AcademyVallejoUSA

Personalised recommendations