Skip to main content
Log in

Thermal expansion behavior of hollow glass particle/vinyl ester composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ceramic particle-reinforced composites have better dimensional stability than the matrix polymer at high temperatures. In hollow-particle filled composites (syntactic foams), the coefficient of thermal expansion (CTE) can be controlled by two parameters simultaneously: wall thickness and volume fraction of particles, which are explored in this study. The CTE was experimentally measured to be up to 60.4 % lower than the matrix material with the addition of glass microballoons for the twelve compositions of syntactic foams characterized using a thermomechanical analyzer. The CTE values have a stronger dependence on particle volume fraction than the wall thickness within the range of parameters explored. The experimental trends are analyzed by using Turner’s and Kerner’s models modified for syntactic foams. The results from the modified Turner’s model show close correlation with the experimental values with a maximum difference of ±15 %. Parametric studies show that syntactic foams of a wide range of densities can be tailored to obtain the same CTE value. The experimental and theoretical results are helpful in developing syntactic foams with desired properties for thermal applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gupta N, Woldesenbet E, Mensah P (2004) Compos A Appl Sci Manuf 35:103

    Article  Google Scholar 

  2. Gupta N, Woldesenbet E (2004) J Cell Plast 40:461

    Article  CAS  Google Scholar 

  3. Devi KA, John B, Nair CPR, Ninan KN (2007) J Appl Polym Sci 105:3715

    Article  CAS  Google Scholar 

  4. Wang W-T, Watkins L (2002) In: The 21st international conference on offshore mechanics and arctic engineering, Oslo

  5. Park S-J, Jin F-L, Lee C (2005) Mater Sci Eng, A 402:335

    Article  Google Scholar 

  6. Lin TC, Gupta N, Talalayev A (2009) J Mater Sci 44:1520. doi:10.1007/s10853-008-3074-3

    Article  CAS  Google Scholar 

  7. Shabde V, Hoo K, Gladysz G (2006) J Mater Sci 41:4061. doi:10.1016/j.matlet.2007.08.050

    Article  CAS  Google Scholar 

  8. Porfiri M, Nguyen N, Gupta N (2009) J Mater Sci 44:1540. doi:10.1007/s10853-008-3040-0

    Article  CAS  Google Scholar 

  9. Zweben C (1998) JOM J Minerals Metals Mater Soc 50:47

    Article  CAS  Google Scholar 

  10. Lerch BA, Sullivan RM (2006) In: 43rd Annual technical meeting of the society of engineering science, August 13–16 2006, University Park

  11. Deng DQ, Xu L (2003) Cryogenics 43:465

    Article  CAS  Google Scholar 

  12. Yang CG, Xu L, Chen N (2007) Energy Convers Manage 48:481

    Article  CAS  Google Scholar 

  13. Li G, Nettles D (2010) Polymer 51:755

    Article  CAS  Google Scholar 

  14. Wouterson EM, Boey FYC, Hu X, Wong S-C (2007) Polymer 48:3183

    Article  CAS  Google Scholar 

  15. Rohatgi PK, Gupta N, Alaraj S (2006) J Compos Mater 40:1163

    Article  CAS  Google Scholar 

  16. Zhang Q, Chen G, Wu G, Xiu Z, Luan B (2003) Mater Lett 57:1453

    Article  CAS  Google Scholar 

  17. Yusriah L, Mariatti M, Abu Bakar A (2010) J Reinf Plast Compos 29:3066

    Article  CAS  Google Scholar 

  18. Wong CP, Bollampally RS (1999) J Appl Polym Sci 74:3396

    Article  CAS  Google Scholar 

  19. McGrath LM, Parnas RS, King SH, Schroeder JL, Fischer DA, Lenhart JL (2008) Polymer 49:999

    Article  CAS  Google Scholar 

  20. Yung KC, Zhu BL, Yue TM, Xie CS (2009) Compos Sci Technol 69:260

    Article  CAS  Google Scholar 

  21. Budiansky B (1970) J Compos Mater 4:286

    Article  Google Scholar 

  22. Kerner EH (1956) Proc Phys Soc 69B:808

    CAS  Google Scholar 

  23. Tummala RR, Friedberg AL (1970) J Appl Phys 41:5104

    Article  CAS  Google Scholar 

  24. Turner PS (1946) J Res Nat Bur Stand 37:239

    CAS  Google Scholar 

  25. Vaidya RU, Chawla KK (1994) Compos Sci Technol 50:13

    Article  CAS  Google Scholar 

  26. Schapery RA (1968) J Compos Mater 2:380

    Article  Google Scholar 

  27. Lee KY, Kim KH, Jeoung SK, Ju SI, Shim JH, Kim NH, Lee SG, Lee SM, Lee JK, Paul DR (2007) Polymer 48:4174

    Article  CAS  Google Scholar 

  28. Lee K-Y, Hong SR, Jeoung SK, Kim NH, Lee SG, Paul DR (2008) Polymer 49:2146

    Article  CAS  Google Scholar 

  29. Gunes IS, Cao F, Jana SC (2008) J Polym Sci B 46:1437

    Article  CAS  Google Scholar 

  30. Nielsen LE (1967) J Compos Mater 1:100

    CAS  Google Scholar 

  31. Balch DK, Fitzgerald TJ, Michaud V, Mortensen A, Shen Y, Suresh S (1996) Metall Mater Trans A 27A:3700

    Article  CAS  Google Scholar 

  32. Uju WA, Oguocha INA (2012) Mater Des 33:503

    Article  CAS  Google Scholar 

  33. Gupta N, Ye R, Porfiri M (2010) Compos B Eng 41:236

    Article  Google Scholar 

  34. Aureli M, Porfiri M, Gupta N (2010) Mech Mater 42:726

    Article  Google Scholar 

  35. Shunmugasamy VC, Gupta N, Nguyen NQ, Coelho PG (2010) Mater Sci Eng, A 527:6166

    Article  Google Scholar 

  36. Sideridis E, Kytopoulos VN, Kyriazi E, Bourkas G (2005) Compos Sci Technol 65:909

    Article  CAS  Google Scholar 

  37. Kerner EH (1956) Proc Phys Soc B 69(8): 808

    Google Scholar 

  38. Nji J, Li G (2008) Compos A Appl Sci Manuf 39:1404

    Article  Google Scholar 

  39. Li G, Zhao Y, Pang S–S (1999) Mater Sci Eng, A 271:43

    Article  Google Scholar 

  40. Li G, Zhao Y, Pang SS (1998) Cem Concr Res 28:1057

    Article  CAS  Google Scholar 

  41. Tagliavia G, Porfiri M, Gupta N (2010) Int J Solids Struct 47:2164

    Article  Google Scholar 

  42. Poveda R, Gupta N, Porfiri M (2010) Mater Lett 64:2360

    Article  CAS  Google Scholar 

  43. Saha MC, Nilufar S, Major M, Jeelani S (2008) Polym Compos 29:293

    Article  CAS  Google Scholar 

  44. Porfiri M, Gupta N (2009) Compos B Eng 40:166

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Office of Naval Research Grant N00014-10-1-0988 and Army Research Laboratory cooperative working agreement W911NF-11-2-0096. The authors thank the MAE Department for providing facilities and support. Support of TA Instruments is acknowledged. Mr. Kevan Azhagandi is thanked for help in specimen preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhil Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shunmugasamy, V.C., Pinisetty, D. & Gupta, N. Thermal expansion behavior of hollow glass particle/vinyl ester composites. J Mater Sci 47, 5596–5604 (2012). https://doi.org/10.1007/s10853-012-6452-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6452-9

Keywords

Navigation