Skip to main content

Advertisement

Log in

Effect of carbon fiber reinforcement on the compressive and thermal properties of hollow glass microspheres/epoxy syntactic foam

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Syntactic foams with high strength and light weight are essential for aerospace and deep sea explorations. In this study, high-performance carbon fiber/hollow glass microspheres/epoxy syntactic foams were prepared, and the reinforcing mechanism of carbon fiber is discussed. The syntactic foam with 3 wt% short carbon fiber achieves a uniaxial compressive strength of 141.7 MPa, which is among the highest values reported in the literature. The thermal conductivity of syntactic foam increased by 66.7% with the addition of 3 wt% short carbon fibers, which helped to control the cracking issue caused by the inner temperature surge during the curing process. Further stress characterizations using fiber Bragg gratings (FBGs) confirmed that carbon fiber can relieve the evolution of thermal stress and reduce the residual thermal stress.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Wu X, Gao Y, Wang Y, Fan R, Li ZA, Yu J, Yang K, Sun K et al (2020) Recent developments on epoxy-based syntactic foams for deep sea exploration. J Mater Sci 56:2037–2076. https://doi.org/10.1007/s10853-020-05420-w

    Article  CAS  Google Scholar 

  2. Carlisle KB, Chawla KK, Gladysz GM, Koopman M (2006) Structure and mechanical properties of micro and macro balloons: an overview of test techniques. J Mater Sci 41:3961–3972. https://doi.org/10.1007/s10853-006-7571-y

    Article  CAS  Google Scholar 

  3. Chen S, Zhang X, Wang Q, Wang T (2017) Physical properties of micro hollow glass bead filled castor oil-based polyurethane/epoxy resin IPN composites. J Macromol Sci Part B 56:161–169. https://doi.org/10.1080/00222348.2017.1280704

    Article  CAS  Google Scholar 

  4. Gupta N, Ye R, Porfiri M (2010) Comparison of tensile and compressive characteristics of vinyl ester/glass microballoon syntactic foams. Compos B 41:236–245. https://doi.org/10.1016/j.compositesb.2009.07.004

    Article  CAS  Google Scholar 

  5. Wouterson EM, Boey FYC, Hu X, Wong SC (2007) Effect of fiber reinforcement on the tensile, fracture and thermal properties of syntactic foam. Polymer 48:3183–3191. https://doi.org/10.1016/j.polymer.2007.03.069

    Article  CAS  Google Scholar 

  6. Chevalier J, Camanho PP, Lani F, Pardoen T (2019) Multi-scale characterization and modelling of the transverse compression response of unidirectional carbon fiber reinforced epoxy. Compos Struct 209:160–176. https://doi.org/10.1016/j.compstruct.2018.10.076

    Article  Google Scholar 

  7. Gupta N, Ricci W (2006) Comparison of compressive properties of layered syntactic foams having gradient in microballoon volume fraction and wall thickness. Mater Sci Eng 427:331–342. https://doi.org/10.1016/j.msea.2006.04.078

    Article  CAS  Google Scholar 

  8. Lubineau G (2008) Estimation of residual stresses in laminated composites using field measurements on a cracked sample. Compos Sci Technol 68:2761–2769. https://doi.org/10.1016/j.compscitech.2008.06.009

    Article  CAS  Google Scholar 

  9. Ding A, Li S, Wang J, Zu L (2015) A three-dimensional thermo-viscoelastic analysis of process-induced residual stress in composite laminates. Compos Struct 129:60–69. https://doi.org/10.1016/j.compstruct.2015.03.034

    Article  Google Scholar 

  10. Kravchenko OG, Li C, Strachan A, Kravchenko SG, Pipes RB (2014) Prediction of the chemical and thermal shrinkage in a thermoset polymer. Compos A 66:35–43. https://doi.org/10.1016/j.compositesa.2014.07.002

    Article  CAS  Google Scholar 

  11. Pereira G, McGugan M, Mikkelsen LP (2016) Method for independent strain and temperature measurement in polymeric tensile test specimen using embedded FBG sensors. Polym Test 50:125–134. https://doi.org/10.1016/j.polymertesting.2016.01.005

    Article  CAS  Google Scholar 

  12. Nguyen NQ, Gupta N (2010) Analyzing the effect of fiber reinforcement on properties of syntactic foams. Mater Sci Eng A 527:6422–6428. https://doi.org/10.1016/j.msea.2010.06.077

    Article  CAS  Google Scholar 

  13. Huang C, Huang Z, Qin Y, Ding J, Lv X (2016) Mechanical and dynamic mechanical properties of epoxy syntactic foams reinforced by short carbon fiber. Polym Compos 37:1960–1970. https://doi.org/10.1002/pc.23374

    Article  CAS  Google Scholar 

  14. He S, Carolan D, Fergusson A, Taylor AC (2019) Toughening epoxy syntactic foams with milled carbon fibers: mechanical properties and toughening mechanisms. Mater Des 169:107654. https://doi.org/10.1016/j.matdes.2019.107654

    Article  CAS  Google Scholar 

  15. Gogoi R, Manik G, Arun B (2019) High specific strength hybrid polypropylene composites using carbon fibre and hollow glass microspheres: development, characterization and comparison with empirical models. Compos B Eng 173:106875. https://doi.org/10.1016/j.compositesb.2019.05.086

    Article  CAS  Google Scholar 

  16. Saha MC, Nilufar S (2009) Nanoclay-reinforced syntactic foams: flexure and thermal behavior. Polym Compos 31:1332–1342. https://doi.org/10.1002/pc.20918

    Article  CAS  Google Scholar 

  17. Tsujimoto A, Barkmeier WW, Takamizawa T, Latta MA, Miyazaki M (2018) Influence of thermal stress on simulated localized and generalized wear of nanofilled resin composites. Oper Dent 43:380–390. https://doi.org/10.2341/16-206-L

    Article  CAS  Google Scholar 

  18. Deng S, Zhou X, Fan C, Lin Q, Zhou X (2012) Release of interfacial thermal stress and accompanying improvement of interfacial adhesion in carbon fiber reinforced epoxy resin composites: induced by diblock copolymers. Compos A 43:990–996. https://doi.org/10.1016/j.compositesa.2012.01.004

    Article  CAS  Google Scholar 

  19. Rousseau CE, Plume G, Goñi M, Ale B (2017) Behavior of syntactic foam under plate impact. Mech Res Commun 83:1–5. https://doi.org/10.1016/j.mechrescom.2017.02.006

    Article  Google Scholar 

  20. Gupta N, Woldesenbet E, Mensah P (2004) Compression properties of syntactic foams: effect of cenosphere radius ratio and specimen aspect ratio. Compos A 35:103–111. https://doi.org/10.1016/j.compositesa.2003.08.001

    Article  CAS  Google Scholar 

  21. Shahapurkar K, Garcia CD, Doddamani M, Mohan Kumar GC, Prabhakar P (2018) Compressive behavior of cenosphere/epoxy syntactic foams in arctic conditions. Compos B 135:253–262. https://doi.org/10.1016/j.compositesb.2017.10.006

    Article  CAS  Google Scholar 

  22. Kaur M, Jayakumari LS (2016) Eco-friendly cardanol-based phenalkamine cured epoxy-cenosphere syntactic foams: fabrication and characterisation. J Appl Polym Sci 133:44189. https://doi.org/10.1002/app.44189

    Article  CAS  Google Scholar 

  23. Viot P, Shankar K, Bernard D (2008) Effect of strain rate and density on dynamic behaviour of syntactic foam. Compos Struct 86:314–327. https://doi.org/10.1016/j.compstruct.2008.07.021

    Article  Google Scholar 

  24. Gupta N, Woldesenbet E (2003) Hygrothermal studies on syntactic foams and compressive strength determination. Compos Struct 61:311–320. https://doi.org/10.1016/s0263-8223(03)00060-6

    Article  Google Scholar 

  25. Ullas AV, Kumar D, Roy PK (2018) Poly(dimethylsiloxane)-toughened syntactic foams. J Appl Polym Sci 135:45882. https://doi.org/10.1002/app.45882

    Article  CAS  Google Scholar 

  26. Woldesenbet E, Peter S (2009) Radius ratio effect on high-strain rate properties of syntactic foam composites. J Mater Sci 44:1551–1559. https://doi.org/10.1007/s10853-008-3026-y

    Article  CAS  Google Scholar 

  27. Wouterson EM, Boey FYC, Hu X, Wong SC (2005) Specific properties and fracture toughness of syntactic foam: effect of foam microstructures. Compos Sci Technol 65:1840–1850. https://doi.org/10.1016/j.compscitech.2005.03.012

    Article  CAS  Google Scholar 

  28. Ambika Devi K, John B, Reghunadhan Nair CP, Ninan KN (2007) Syntactic foam composites of epoxy-allyl phenol-bismaleimide ternary blend—processing and properties. J Appl Polym Sci 105:3715–3722. https://doi.org/10.1002/app.26316

    Article  CAS  Google Scholar 

  29. Masahiro H, Tadaharu A (2014) Dynamic mechanical properties of functionally graded syntactic epoxy foam. Eng Syst. https://doi.org/10.1007/978-3-7091-1571-8__19

    Article  Google Scholar 

  30. Gupta N, Kishore WE, Sankaran S (2001) Studies on compressive failure features in syntactic foam material. J Mater Sci 36:4485–4491. https://doi.org/10.1023/A:1017986820603

    Article  CAS  Google Scholar 

  31. Ghamsari AK, Wicker S, Woldesenbet E (2014) Bucky syntactic foam; multi-functional composite utilizing carbon nanotubes-ionic liquid hybrid. Compos B 67:1–8. https://doi.org/10.1016/j.compositesb.2014.06.030

    Article  CAS  Google Scholar 

  32. Siriruk A, Woracek R, Puplampu SB, Penumadu D (2017) Damage evolution in VARTM-based carbon fiber vinyl ester marine composites and sea water effects. J Sand Struct Mater 21:2057–2076. https://doi.org/10.1177/1099636217731906

    Article  Google Scholar 

  33. Xu G, Gong M, Shi W (2005) Effects of hyperbranched poly(ester-silane) as a coupling agent on the mechanical behavior of glass bead filled epoxy resin. Polym Adv Technol 16:473–479. https://doi.org/10.1002/pat.610

    Article  CAS  Google Scholar 

  34. Sharma M, Gao SL, Mader E, Sharma H, Wei LY, Bijwe J (2014) Carbon fiber surfaces and composite interphases. Compos Sci Technol 102:35–50. https://doi.org/10.1016/j.compscitech.2014.07.005

    Article  CAS  Google Scholar 

  35. Yilmaz C, Akalin C, Kocaman ES, Suleman A, Yildiz M (2016) Monitoring poisson’s ratio of glass fiber reinforced composites as damage index using biaxial fiber bragg grating sensors. Polym Test 53:98–107. https://doi.org/10.1016/j.polymertesting.2016.05.009

    Article  CAS  Google Scholar 

  36. Lau KT (2014) Structural health monitoring for smart composites using embedded FBG sensor technology. Mater Sci Eng 30:1642–1654. https://doi.org/10.1179/1743284714y.0000000608

    Article  CAS  Google Scholar 

  37. Kuanga KSC, Kennyb R, Whelanb MP, Cantwella WJ, Chalkera PR (2001) Embedded fibre bragg grating sensors in advanced composite materials. Compos Sci Technol 61:1379–1387. https://doi.org/10.1016/S0266-3538(01)00037-9

    Article  Google Scholar 

  38. Nawab Y, Shahid S, Boyard N, Jacquemin F (2013) Chemical shrinkage characterization techniques for thermoset resins and associated composites. J Mater Sci 48:5387–5409. https://doi.org/10.1007/s10853-013-7333-6

    Article  CAS  Google Scholar 

  39. Riccio A, Caprio FD, Camerlingo F, Scaramuzzino F, Gambino B (2012) Positioning of embedded optical fibres sensors for the monitoring of buckling in stiffened composite panels. Appl Compos Mater 20:73–86. https://doi.org/10.1007/s10443-012-9252-0

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Youth Innovation Promotion Association of CAS (2019029), the fund of the Strategic Priority Research Program A of the Chinese Academy of Sciences (XDA22010201, XDA22010204), and the National Key Research and Development Program of China (2016YFC0304501, 2019YFC0311401).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Liao, Kaiqi Yan or Xiaoxu Wang.

Additional information

Handling Editor: Yaroslava Yingling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3907 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Lv, B., Liao, B. et al. Effect of carbon fiber reinforcement on the compressive and thermal properties of hollow glass microspheres/epoxy syntactic foam. J Mater Sci 57, 3396–3404 (2022). https://doi.org/10.1007/s10853-021-06806-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06806-0

Navigation