Skip to main content

Advertisement

Log in

Effects of microballoons’ size and content in epoxy on compressive strength and modulus

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Five slabs containing volume of microballoons ranging from 33.4 to 51.5% and all belonging to a size range of 65–100 μm were made. In order to study the effect of size range, another slab, but belonging to a broader range of 44–175 μm, was also cast, where in the microballoons’ content was 40.1% by volume. The first set of five slabs showed a decrease in compressive strength from 82.4 to 58 MPa as the microballoons’ content increased. A similar trend was observed for modulus values also. The work further showed that the samples from the narrower size range display a higher strength. Microscopic examinations revealed crushing of microballoons for the highest microballoons’ case while for the least microballoons bearing sample, deformation marks were visible on the epoxy matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hall CK (April 1984) In Proc of Conf On FRP. University of Liverpool, UK

  2. Narkis M, Putterman M, Keing S (1983) In: SPI, 38th Annual conference by Reinforced Plastics/Composites Institute, ‘Composite Solutions to Materials’. Society of the Plastics Industry, Houston, Texas, USA Sess, 8fp, 2

  3. Rand PB (1978) J Cellu Plast 14:277

    Google Scholar 

  4. Benning CJ (1969) In: Plastic Foams, vol 1. John Wiley, New York, p 537

  5. Huttinger KJ (1971) Carbon 9:222

    Article  Google Scholar 

  6. Volk MC (1969) Encyclopedia of Polym Sci Technol, vol 8, Reinhold, New York, p 752

  7. Braun T, Frag AB (1978) Anal Chem Acta 99:1

    Article  CAS  Google Scholar 

  8. Shutov FA (1986) Adv Polym Sci 63:73

    Google Scholar 

  9. Kishore, Shankar R, Sankaran S (2005) Mater Sci Eng A 412:153

    Google Scholar 

  10. Gibson LJ, Wegner LD (1994) Cellular Microcellular Mater ASME 53:83

    Google Scholar 

  11. Gibson LJ, Ashby MF (1997) In: Cellular solids: structure and properties, 2nd ed. Cambridge University Press, New York, p 345

  12. Rittel D (2005) Mater Lett 59:1845

    Article  CAS  Google Scholar 

  13. Song B, Chen W, Frew DJ (2004) J Compos Mater 38:915

    Article  CAS  Google Scholar 

  14. Wouterson EM, Boey FYC, Hu X, Wong S-C (2004) J Cellu Plast 40:145

    Article  Google Scholar 

  15. Bardella L, Genna F (2001) Intl J Solid Struct 38:7235

    Article  Google Scholar 

  16. Rizzi E, Papa E, Corigliano A (2000) Compos Sci Technol 60:2169

    Article  Google Scholar 

  17. Lawrence E, Pyrz R (2001) Polym Polym Compos 9:227

    CAS  Google Scholar 

  18. Gupta N, Kishore, Woldesenbet E, Sankaran S (2001) J Mater Sci 36:4485

    Article  CAS  Google Scholar 

  19. Rizzi E, Papa E, Corigliano A (2000) Int J Solid Struct 37:5773

    Article  Google Scholar 

  20. Kim HS, Plubrai P (2004) Compos Part A 35:1009

    Article  Google Scholar 

  21. Woldesenbet E, Gupta N, Jerro HD (2005) J Sand Struc Mater 7:95

    Article  CAS  Google Scholar 

  22. Karthikeyan CS, Sankaran S, Kishore (2004) Mater Lett 58:995

    Article  CAS  Google Scholar 

  23. Gupta N, Woldesenbet E, Mensah P (2004) Compos Part A 35:103

    Article  Google Scholar 

  24. Wouterson EM, Boey FYC, Hu X, Wong S-C (2005) Compos Sci Technol 65:1840

    Article  CAS  Google Scholar 

  25. Marur PR (2005) Mater Lett 59:1954

    Article  CAS  Google Scholar 

  26. Gupta N, Woldesenbet E (2004) J Cell Plast 40:461

    Article  CAS  Google Scholar 

  27. El-Hadek A, Tippur HV (2002) J Mater Sci 37:1649

    Article  CAS  Google Scholar 

  28. Huang Y-J, Vaikhanski L, Nutt SR Compos. Part A, corrected proof available online 22 July 2005

  29. Gupta N, Woldesenbet E (November, 2002) In: Proc SAMPE Symp, Baltimore, p 4

  30. Kishore, Shankar R, Sankaran S (2005) J Appl Polym Sci 98:680

    Article  CAS  Google Scholar 

  31. Kishore, Shankar R, Sankaran S (2005) J Appl Polym Sci 98:687

    Article  CAS  Google Scholar 

  32. Kim HS, Plurai P (July, 2002) In: Proc Australian conference on composites, ACUN–4, Composite Systems, Sydney, p 21

  33. Bruneton E, Tallaron C, Gras-Naulin N, Cosculluela A (2002) Carbon 40:1919

    Article  CAS  Google Scholar 

  34. Kenig S, Raiter I, Narkis M (1984) J Cell Plast 20:423

    CAS  Google Scholar 

  35. Okuno K, Woodhams RT (1974) J Cell Plast 10:237

    CAS  Google Scholar 

  36. ASTM D 1621–73, Standard test method for compressive properties of rigid cellular plastics

  37. Bunn P, Mottram JT (1993) Compos 24:565

    Article  CAS  Google Scholar 

  38. Menges G, Knipschild F (1982) In: Hylyard NC (ed) Mechanics of cellular plastics, Ch. 2A. Appl Sci Pub, Essex, England, p 67

  39. Sidess A, Holdengraber Y, Buchman A (1993) Compos 24:355

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the contributions of Messrs. Jagdish, Ravi Sekhar and Govind Raju of ADE who were involved in the preparation of the syntactic foams. The first (K) and second (RS) authors are grateful to Mr. Sasidhara for his help in conducting the compression tests. The first author (K) further would like to place on record the assistance rendered by the members of the Polymer Composites Laboratory in the Department of Metallurgy at various stages of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kishore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kishore, Shankar, R. & Sankaran, S. Effects of microballoons’ size and content in epoxy on compressive strength and modulus. J Mater Sci 41, 7459–7465 (2006). https://doi.org/10.1007/s10853-006-0801-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0801-5

Keywords

Navigation