Skip to main content
Log in

Review and Recent Developments on the Perfectly Matched Layer (PML) Method for the Numerical Modeling and Simulation of Elastic Wave Propagation in Unbounded Domains

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

This review article revisits and outlines the perfectly matched layer (PML) method and its various formulations developed over the past 25 years for the numerical modeling and simulation of wave propagation in unbounded media. Based on the concept of complex coordinate stretching, an efficient mixed displacement-strain unsplit-field PML formulation for second-order (displacement-based) linear elastodynamic equations is then proposed for simulating the propagation and absorption of elastic waves in unbounded (infinite or semi-infinite) domains. Both time-harmonic (frequency-domain) and time-dependent (time-domain) PML formulations are derived for two- and three-dimensional linear elastodynamic problems. Through the introduction of only a few additional variables governed by low-order auxiliary differential equations, the resulting mixed time-domain PML formulation is second-order in time, thereby allowing the use of standard time integration schemes commonly employed in computational structural dynamics and thus facilitating the incorporation into existing displacement-based finite element codes. For computational efficiency, the proposed time-domain PML formulation is implemented using a hybrid approach that couples a mixed (displacement-strain) formulation for the PML region with a classical (displacement-based) formulation for the physical domain of interest, using a standard Galerkin finite element method (FEM) for spatial discretization and a Newmark time scheme coupled with a finite difference (Crank-Nicolson) time scheme for time sampling. Numerical experiments show the performances of the PML method in terms of accuracy, efficiency and stability for two-dimensional linear elastodynamic problems in single- and multi-layer isotropic homogeneous elastic media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. The interested reader can refer to [17, 18, 33, 42, 196, 197] for the definition of well-posedness, hyperbolicity and stability of initial boundary value problems for hyperbolic systems.

  2. As already mentioned in [59, 161, 239] and unlike stated in [216, 240], the fourth-order tensor-valued field \(\widetilde{\varvec{C}}\) does have the major symmetry property, i.e. \(\widetilde{C}_{ijkl} = \widetilde{C}_{klij}\), but both minor ones are lost i.e. \(\widetilde{C}_{ijkl} \ne \widetilde{C}_{jikl}\) and \(\widetilde{C}_{ijkl} \ne \widetilde{C}_{ijlk}\).

  3. The Ricker wavelet r(t) defined in (54) is such that \(r(t) = \dfrac{d^2p}{d t^2}(t)\), where \(p(t) = \dfrac{1}{2(\pi f_d)^2} \exp (-(\pi f_d)^2(t - t_d)^2)\) corresponds to a modified second-order derivative of the Gaussian probability density function \(t\mapsto \dfrac{1}{\sigma \sqrt{2\pi }} \exp \left( -\dfrac{(t - t_d)^2}{2\sigma ^2}\right)\) with mean value \(t_d\) and standard deviation \(\sigma =\sqrt{2}/\omega _d\) up to a multiplicative constant \(4\sqrt{\pi }/\omega _d^3\) with \(\omega _d=2\pi f_d\) the central (or dominant) angular frequency.

References

  1. Abarbanel S, Gottlieb D (1997) A mathematical analysis of the PML method. J Comput Phys 134(2):357–363. https://doi.org/10.1006/jcph.1997.5717

    Article  MathSciNet  MATH  Google Scholar 

  2. Abarbanel S, Gottlieb D (1998) On the construction and analysis of absorbing layers in CEM. Appl Numer Math 27(4):331–340 (Special Issue on Absorbing Boundary Conditions). https://doi.org/10.1016/S0168-9274(98)00018-X

    Article  MathSciNet  MATH  Google Scholar 

  3. Abarbanel S, Gottlieb D, Hesthaven J (1999) Well-posed perfectly matched layers for advective acoustics. J Comput Phys 154(2):266–283. https://doi.org/10.1006/jcph.1999.6313

    Article  MathSciNet  MATH  Google Scholar 

  4. Abarbanel S, Gottlieb D, Hesthaven JS (2002) Long time behavior of the perfectly matched layer equations in computational electromagnetics. J Sci Comput 17(1):405–422. https://doi.org/10.1023/A:1015141823608

    Article  MathSciNet  MATH  Google Scholar 

  5. Abarbanel S, Gottlieb D, Hesthaven JS (2006) Non-linear PML equations for time dependent electromagnetics in three dimensions. J Sci Comput 28(2):125–137. https://doi.org/10.1007/s10915-006-9072-1

    Article  MathSciNet  MATH  Google Scholar 

  6. Abarbanel S, Qasimov H, Tsynkov S (2009) Long-time performance of unsplit PMLs with explicit second order schemes. J Sci Comput 41(1):1–12. https://doi.org/10.1007/s10915-009-9282-4

    Article  MathSciNet  MATH  Google Scholar 

  7. Abarbanel S, Stanescu D, Hussaini M (2003) Unsplit variables perfectly matched layers for the shallow water equations with coriolis forces. Comput Geosci 7(4):275–294. https://doi.org/10.1023/B:COMG.0000005245.72694.13

    Article  MathSciNet  MATH  Google Scholar 

  8. Aguilar J, Combes JM (1971) A class of analytic perturbations for one-body Schrödinger Hamiltonians. Commun Math Phys 22(4):269–279. https://doi.org/10.1007/BF01877510

    Article  MATH  Google Scholar 

  9. Ahland A, Schulz D, Voges E (1999) Accurate mesh truncation for Schrödinger equations by a perfectly matched layer absorber: application to the calculation of optical spectra. Phys Rev B 60:R5109–R5112. https://doi.org/10.1103/PhysRevB.60.R5109

    Article  Google Scholar 

  10. Alvarez J, Angulo LD, Bretones AR, Cabello MR, Garcia SG (2013) A leap-frog discontinuous Galerkin time-domain method for HIRF assessment. IEEE Trans Electromagn Compat 55(6):1250–1259. https://doi.org/10.1109/TEMC.2013.2265045

    Article  Google Scholar 

  11. Antoine X, Arnold A, Besse C, Ehrhardt M, Schädle A (2008) A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations. Commun Comput Phys 4(4):729–796

    MathSciNet  MATH  Google Scholar 

  12. Antoine X, Barucq H, Bendali A (1999) Bayliss-Turkel-like radiation conditions on surfaces of arbitrary shape. J Math Anal Appl 229(1):184–211. https://doi.org/10.1006/jmaa.1998.6153

    Article  MathSciNet  MATH  Google Scholar 

  13. Antoine X, Besse C, Klein P (2011) Numerical solution of time-dependent nonlinear Schrödinger equations using domain truncation techniques coupled with relaxation scheme. Laser Phys 21(8):1491. https://doi.org/10.1134/S1054660X11150011

    Article  Google Scholar 

  14. Antoine X, Lorin E, Tang Q (2017) A friendly review of absorbing boundary conditions and perfectly matched layers for classical and relativistic quantum waves equations. Mol Phys 115(15–16):1861–1879. https://doi.org/10.1080/00268976.2017.1290834

    Article  Google Scholar 

  15. Appelö D, Colonius T (2009) A high-order super-grid-scale absorbing layer and its application to linear hyperbolic systems. J Comput Phys 228(11):4200–4217. https://doi.org/10.1016/j.jcp.2009.02.030

    Article  MathSciNet  MATH  Google Scholar 

  16. Appelö D, Hagstrom T (2009) A general perfectly matched layer model for hyperbolic-parabolic systems. SIAM J Sci Comput 31(5):3301–3323. https://doi.org/10.1137/080713951

    Article  MathSciNet  MATH  Google Scholar 

  17. Appelö D, Hagstrom T, Kreiss G (2006) Perfectly matched layers for hyperbolic systems: general formulation, well-posedness, and stability. SIAM J Appl Math 67(1):1–23. https://doi.org/10.1137/050639107

    Article  MathSciNet  MATH  Google Scholar 

  18. Appelö D, Kreiss G (2006) A new absorbing layer for elastic waves. J Comput Phys 215(2):642–660. https://doi.org/10.1016/j.jcp.2005.11.006

    Article  MathSciNet  MATH  Google Scholar 

  19. Appelö D, Kreiss G (2007) Application of a perfectly matched layer to the nonlinear wave equation. Wave Motion 44(7):531–548. https://doi.org/10.1016/j.wavemoti.2007.01.004

    Article  MathSciNet  MATH  Google Scholar 

  20. Assi H, Cobbold RS (2017) Compact second-order time-domain perfectly matched layer formulation for elastic wave propagation in two dimensions. Math Mech Solids 22(1):20–37. https://doi.org/10.1177/1081286515569266

    Article  MathSciNet  MATH  Google Scholar 

  21. Assi H, Cobbold RSC (2016) A perfectly matched layer formulation for modeling transient wave propagation in an unbounded fluid-solid medium. J Acoust Soc Am 139(4):1528–1536. https://doi.org/10.1121/1.4944793

    Article  Google Scholar 

  22. Assimaki D, Kallivokas L, Kang J, Li W, Kucukcoban S (2012) Time-domain forward and inverse modeling of lossy soils with frequency-independent Q for near-surface applications. Soil Dyn Earthq Eng 43:139–159. https://doi.org/10.1016/j.soildyn.2012.07.001

    Article  Google Scholar 

  23. Asvadurov S, Druskin V, Guddati M, Knizhnerman L (2003) On optimal finite-difference approximation of PML. SIAM J Numer Anal 41(1):287–305. https://doi.org/10.1137/S0036142901391451

    Article  MathSciNet  MATH  Google Scholar 

  24. Baffet D, Bielak J, Givoli D, Hagstrom T, Rabinovich D (2012) Long-time stable high-order absorbing boundary conditions for elastodynamics. Comput Methods Appl Mech Eng 241–244:20–37. https://doi.org/10.1016/j.cma.2012.05.007

    Article  MathSciNet  MATH  Google Scholar 

  25. Bao G, Wu H (2005) Convergence analysis of the perfectly matched layer problems for time-Harmonic Maxwell’s equations. SIAM J Numer Anal 43(5):2121–2143. https://doi.org/10.1137/040604315

    Article  MathSciNet  MATH  Google Scholar 

  26. Barucq H, Diaz J, Tlemcani M (2010) New absorbing layers conditions for short water waves. J Comput Phys 229(1):58–72. https://doi.org/10.1016/j.jcp.2009.08.033

    Article  MathSciNet  MATH  Google Scholar 

  27. Basu U (2009) Explicit finite element perfectly matched layer for transient three-dimensional elastic waves. Int J Numer Methods Eng 77(2):151–176. https://doi.org/10.1002/nme.2397

    Article  MathSciNet  MATH  Google Scholar 

  28. Basu U, Chopra AK (2003) Perfectly matched layers for time-harmonic elastodynamics of unbounded domains: theory and finite-element implementation. Comput Methods Appl Mech Eng 192(11):1337–1375. https://doi.org/10.1016/S0045-7825(02)00642-4

    Article  MATH  Google Scholar 

  29. Basu U, Chopra AK (2004) Perfectly matched layers for transient elastodynamics of unbounded domains. Int J Numer Methods Eng 59(8):1039–1074. https://doi.org/10.1002/nme.896

    Article  MathSciNet  MATH  Google Scholar 

  30. Bécache E, Dhia A, Legendre G (2006) Perfectly matched layers for time-harmonic acoustics in the presence of a uniform flow. SIAM J Numer Anal 44(3):1191–1217. https://doi.org/10.1137/040617741

    Article  MathSciNet  MATH  Google Scholar 

  31. Bécache E, Dhia ASBB, Legendre G (2004) Perfectly matched layers for the convected Helmholtz equation. SIAM J Numer Anal 42(1):409–433. https://doi.org/10.1137/S0036142903420984

    Article  MathSciNet  MATH  Google Scholar 

  32. Bécache E, Ezziani A, Joly P (2005) A mixed finite element approach for viscoelastic wave propagation. Comput Geosci 8(3):255–299. https://doi.org/10.1007/s10596-005-3772-8

    Article  MathSciNet  MATH  Google Scholar 

  33. Bécache E, Fauqueux S, Joly P (2003) Stability of perfectly matched layers, group velocities and anisotropic waves. J Comput Phys 188(2):399–433. https://doi.org/10.1016/S0021-9991(03)00184-0

    Article  MathSciNet  MATH  Google Scholar 

  34. Bécache E, Givoli D, Hagstrom T (2010) High-order absorbing boundary conditions for anisotropic and convective wave equations. J Comput Phys 229(4):1099–1129. https://doi.org/10.1016/j.jcp.2009.10.012

    Article  MathSciNet  MATH  Google Scholar 

  35. Bécache E, Joly P (2002) On the analysis of Bérenger’s perfectly matched layers for Maxwell’s equations. ESAIM M2AN 36(1):87–119. https://doi.org/10.1051/m2an:2002004

    Article  MATH  Google Scholar 

  36. Bécache E, Joly P, Kachanovska M (2017) Stable perfectly matched layers for a cold plasma in a strong background magnetic field. J Comput Phys 341:76–101. https://doi.org/10.1016/j.jcp.2017.03.051

    Article  MathSciNet  MATH  Google Scholar 

  37. Bécache E, Joly P, Tsogka C (2001) Fictitious domains, mixed finite elements and perfectly matched layers for 2-D elastic wave propagation. J Comput Acoust 09(03):1175–1201. https://doi.org/10.1142/S0218396X01000966

    Article  MathSciNet  MATH  Google Scholar 

  38. Bécache E, Joly P, Vinoles V (2018) On the analysis of perfectly matched layers for a class of dispersive media and application to negative index metamaterials. Math Comput 87(314):2775–2810. https://doi.org/10.1090/mcom/3307

    Article  MathSciNet  MATH  Google Scholar 

  39. Bécache E, Kachanovska M (2017) Stable perfectly matched layers for a class of anisotropic dispersive models. Part I: necessary and sufficient conditions of stability. ESAIM M2AN 51(6):2399–2434. https://doi.org/10.1051/m2an/2017019

    Article  MathSciNet  MATH  Google Scholar 

  40. Bécache E, Petropoulos PG, Gedney SD (2004) On the long-time behavior of unsplit perfectly matched layers. IEEE Trans Antennas Propag 52(5):1335–1342. https://doi.org/10.1109/TAP.2004.827253

    Article  MathSciNet  MATH  Google Scholar 

  41. Bécache E, Prieto A (2012) Remarks on the stability of Cartesian PMLs in corners. Appl Numer Math 62(11):1639–1653. https://doi.org/10.1016/j.apnum.2012.05.003

    Article  MathSciNet  MATH  Google Scholar 

  42. Bécache É, Joly P, Kachanovska M, Vinoles V (2015) Perfectly matched layers in negative index metamaterials and plasmas. ESAIM Proc 50:113–132. https://doi.org/10.1051/proc/201550006

    Article  MathSciNet  MATH  Google Scholar 

  43. Benito J, Ureña F, Gavete L, Salete E, Muelas A (2013) A GFDM with PML for seismic wave equations in heterogeneous media. J Comput Appl Math 252:40–51. https://doi.org/10.1016/j.cam.2012.08.007 (Selected papers on Computational and Mathematical Methods in Science and Engineering (CMMSE))

  44. Benito J, Ureña F, Gavete L, Salete E, Ureña M (2017) Implementations with generalized finite differences of the displacements and velocity-stress formulations of seismic wave propagation problem. Appl Math Model 52:1–14. https://doi.org/10.1016/j.apm.2017.07.017

    Article  MathSciNet  MATH  Google Scholar 

  45. Benito J, Ureña F, Salete E, Muelas A, Gavete L, Galindo R (2015) Wave propagation in soils problems using the Generalized Finite Difference Method. Soil Dyn Earthq Eng 79:190–198. https://doi.org/10.1016/j.soildyn.2015.09.012

    Article  Google Scholar 

  46. Bérenger JP (1994) A perfectly matched layer for the absorption of electromagnetic waves. J Comput Phys 114(2):185–200. https://doi.org/10.1006/jcph.1994.1159

    Article  MathSciNet  MATH  Google Scholar 

  47. Berenger JP (1996) Perfectly matched layer for the FDTD solution of wave-structure interaction problems. IEEE Trans Antennas Propag 44(1):110–117. https://doi.org/10.1109/8.477535

    Article  Google Scholar 

  48. Bérenger JP (1996) Three-dimensional perfectly matched layer for the absorption of electromagnetic waves. J Comput Phys 127(2):363–379. https://doi.org/10.1006/jcph.1996.0181

    Article  MathSciNet  MATH  Google Scholar 

  49. Bérenger JP (1997) Improved PML for the FDTD solution of wave-structure interaction problems. IEEE Trans Antennas Propag 45(3):466–473. https://doi.org/10.1109/8.558661

    Article  Google Scholar 

  50. Bérenger JP (1998) An effective PML for the absorption of evanescent waves in waveguides. IEEE Microw Guid Wave Lett 8(5):188–190. https://doi.org/10.1109/75.668706

    Article  Google Scholar 

  51. Bérenger JP (1999) Evanescent waves in PML’s: origin of the numerical reflection in wave-structure interaction problems. IEEE Trans Antennas Propag 47(10):1497–1503. https://doi.org/10.1109/8.805891

    Article  MathSciNet  MATH  Google Scholar 

  52. Bérenger JP (2002) Application of the CFS PML to the absorption of evanescent waves in waveguides. IEEE Microw Wirel Compon Lett 12(6):218–220. https://doi.org/10.1109/LMWC.2002.1010000

    Article  Google Scholar 

  53. Bérenger JP (2002) Numerical reflection from FDTD-PMLs: a comparison of the split PML with the unsplit and CFS PMLs. IEEE Trans Antennas Propag 50(3):258–265. https://doi.org/10.1109/8.999615

    Article  Google Scholar 

  54. Bérenger JP (2007) Perfectly matched layer (PML) for computational electromagnetics. Synth Lect Comput Electromagn 2(1):1–117. https://doi.org/10.2200/S00030ED1V01Y200605CEM008

    Article  Google Scholar 

  55. Bermúdez A, Hervella-Nieto L, Prieto A, Rodríguez R (2004) An exact bounded PML for the Helmholtz equation. CR Math 339(11):803–808. https://doi.org/10.1016/j.crma.2004.10.006

    Article  MathSciNet  MATH  Google Scholar 

  56. Bermúdez A, Hervella-Nieto L, Prieto A, Rodríguez R (2007) An optimal perfectly matched layer with unbounded absorbing function for time-harmonic acoustic scattering problems. J Comput Phys 223(2):469–488. https://doi.org/10.1016/j.jcp.2006.09.018

    Article  MathSciNet  MATH  Google Scholar 

  57. Bermúdez A, Hervella-Nieto L, Prieto A, Rodríguez R (2007) Validation of acoustic models for time-harmonic dissipative scattering problems. J Comput Acoust 15(01):95–121. https://doi.org/10.1142/S0218396X07003238

    Article  MathSciNet  MATH  Google Scholar 

  58. Bermúdez A, Hervella-Nieto L, Prieto A, Rodríguez R (2008) An exact bounded perfectly matched layer for time-harmonic scattering problems. SIAM J Sci Comput 30(1):312–338. https://doi.org/10.1137/060670912

    Article  MathSciNet  MATH  Google Scholar 

  59. Bermúdez A, Hervella-Nieto L, Prieto A, Rodríguez R (2010) Perfectly matched layers for time-harmonic second order elliptic problems. Arch Comput Methods Eng 17(1):77–107. https://doi.org/10.1007/s11831-010-9041-6

    Article  MATH  Google Scholar 

  60. Bindel DS, Govindjee S (2005) Elastic PMLs for resonator anchor loss simulation. Int J Numer Methods Eng 64(6):789–818. https://doi.org/10.1002/nme.1394

    Article  MATH  Google Scholar 

  61. Bramble JH, Pasciak JE (2007) Analysis of a finite PML approximation for the three dimensional time-harmonic Maxwell and acoustic scattering problems. Math Comput 76(258):597–614. https://doi.org/10.1090/S0025-5718-06-01930-2

    Article  MathSciNet  MATH  Google Scholar 

  62. Brun M, Zafati E, Djeran-Maigre I, Prunier F (2016) Hybrid asynchronous perfectly matched layer for seismic wave propagation in unbounded domains. Finite Elem Anal Des 122:1–15. https://doi.org/10.1016/j.finel.2016.07.006

    Article  MathSciNet  MATH  Google Scholar 

  63. Butterworth S (1930) On the theory of filter amplifiers. Exp Wirel Wirel Eng 7:536–541

    Google Scholar 

  64. Calvo D, Rudd K, Zampolli M, Sanders W, Bibee L (2010) Simulation of acoustic scattering from an aluminum cylinder near a rough interface using the elastodynamic finite integration technique. Wave Motion 47(8):616–634. https://doi.org/10.1016/j.wavemoti.2010.05.002

    Article  MATH  Google Scholar 

  65. Chen Z, Wu X (2012) Long-time stability and convergence of the uniaxial perfectly matched layer method for time-domain acoustic scattering problems. SIAM J Numer Anal 50(5):2632–2655. https://doi.org/10.1137/110835268

    Article  MathSciNet  MATH  Google Scholar 

  66. Cheng C, Lee JH, Lim KH, Massoud HZ, Liu QH (2007) 3D quantum transport solver based on the perfectly matched layer and spectral element methods for the simulation of semiconductor nanodevices. J Comput Phys 227(1):455–471. https://doi.org/10.1016/j.jcp.2007.07.028

    Article  MathSciNet  MATH  Google Scholar 

  67. Chew W, Liu Q (1996) Perfectly matched layers for elastodynamics: a new absorbing boundary condition. J Comput Acoust 04(04):341–359. https://doi.org/10.1142/S0218396X96000118

    Article  Google Scholar 

  68. Chew WC, Jin JM, Michielssen E (1997) Complex coordinate stretching as a generalized absorbing boundary condition. Microw Opt Technol Lett 15(6):363–369

    Article  Google Scholar 

  69. Chew WC, Weedon WH (1994) A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates. Microw Opt Technol Lett 7(13):599–604. https://doi.org/10.1002/mop.4650071304

    Article  Google Scholar 

  70. Chilton RA, Lee R (2007) The discrete origin of FETD-Newmark late time instability, and a correction scheme. J Comput Phys 224(2):1293–1306. https://doi.org/10.1016/j.jcp.2006.11.021

    Article  MathSciNet  MATH  Google Scholar 

  71. Cimpeanu R, Martinsson A, Heil M (2015) A parameter-free perfectly matched layer formulation for the finite-element-based solution of the Helmholtz equation. J Comput Phys 296:329–347. https://doi.org/10.1016/j.jcp.2015.05.006

    Article  MathSciNet  MATH  Google Scholar 

  72. Cohen G, Fauqueux S (2005) Mixed spectral finite elements for the linear elasticity system in unbounded domains. SIAM J Sci Comput 26(3):864–884. https://doi.org/10.1137/S1064827502407457

    Article  MathSciNet  MATH  Google Scholar 

  73. Collino F (1997) Perfectly matched absorbing layers for the paraxial equations. J Comput Phys 131(1):164–180. https://doi.org/10.1006/jcph.1996.5594

    Article  MathSciNet  MATH  Google Scholar 

  74. Collino F, Monk P (1998) Optimizing the perfectly matched layer. Comput Methods Appl Mech Eng 164(1):157–171 (Exterior Problems of Wave Propagation). https://doi.org/10.1016/S0045-7825(98)00052-8

    Article  MathSciNet  MATH  Google Scholar 

  75. Collino F, Monk P (1998) The perfectly matched layer in curvilinear coordinates. SIAM J Sci Comput 19(6):2061–2090. https://doi.org/10.1137/S1064827596301406

    Article  MathSciNet  MATH  Google Scholar 

  76. Collino F, Tsogka C (2001) Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media. Geophysics 66(1):294–307. https://doi.org/10.1190/1.1444908

    Article  Google Scholar 

  77. Colonius T (2004) Modeling artificial boundary conditions for compressible flow. Annu Rev Fluid Mech 36:315–345

    Article  MathSciNet  Google Scholar 

  78. Correia D, Jin JM (2004) 3D-FDTD-PML analysis of left-handed metamaterials. Microw Opt Technol Lett 40(3):201–205. https://doi.org/10.1002/mop.11328

    Article  Google Scholar 

  79. Correia D, Jin JM (2005) A simple and efficient implementation of CFS-PML in the FDTD analysis of periodic structures. IEEE Microw Wirel Compon Lett 15(7):487–489. https://doi.org/10.1109/LMWC.2005.851583

    Article  Google Scholar 

  80. Correia D, Jin JM (2005) On the development of a higher-order PML. IEEE Trans Antennas Propag 53(12):4157–4163. https://doi.org/10.1109/TAP.2005.859901

    Article  Google Scholar 

  81. Correia D, Jin JM (2006) Performance of regular PML, CFS-PML, and second-order PML for waveguide problems. Microw Opt Technol Lett 48(10):2121–2126. https://doi.org/10.1002/mop.21872

    Article  Google Scholar 

  82. Courant R, Friedrichs K, Lewy H (1928) Über die partiellen Differenzengleichungen der mathematischen Physik. Math Ann 100(1):32–74. https://doi.org/10.1007/BF01448839

    Article  MathSciNet  MATH  Google Scholar 

  83. Courant R, Friedrichs K, Lewy H (1967) On the partial difference equations of mathematical physics. IBM J Res Dev 11(2):215–234. https://doi.org/10.1147/rd.112.0215

    Article  MathSciNet  MATH  Google Scholar 

  84. Cummer S (2004) Perfectly matched layer behavior in negative refractive index materials. IEEE Antennas Wirel Propag Lett 3:172–175. https://doi.org/10.1109/LAWP.2004.833710

    Article  Google Scholar 

  85. Darblade G, Baraille R, yves Le Roux A, Carton X, Pinchon D, (1997) Conditions limites non réfléchissantes pour un modèle de Saint-Venant bidimensionnel barotrope linéarisé. Comptes Rendus de l’Académie des Sciences Ser I Math 324(4):485–490. https://doi.org/10.1016/S0764-4442(97)80091-2

    Article  MathSciNet  MATH  Google Scholar 

  86. Datta PK, Bhattacharya D (2002) Optimization of uniaxial perfectly matched layer parameters for finite difference time domain simulation and application to coupled microstrip lines with multiple bend discontinuities. Int J RF Microw Comput Aided Eng 12(6):508–519. https://doi.org/10.1002/mmce.10051

    Article  Google Scholar 

  87. Demaldent E, Imperiale S (2013) Perfectly matched transmission problem with absorbing layers: application to anisotropic acoustics in convex polygonal domains. Int J Numer Methods Eng 96(11):689–711. https://doi.org/10.1002/nme.4572

    Article  MathSciNet  MATH  Google Scholar 

  88. Dhia ASBB, Chambeyron C, Legendre G (2014) On the use of perfectly matched layers in the presence of long or backward propagating guided elastic waves. Wave Motion 51(2):266–283. https://doi.org/10.1016/j.wavemoti.2013.08.001

    Article  MathSciNet  MATH  Google Scholar 

  89. Diaz J, Joly P (2003) Stabilized perfectly matched layer for advective acoustics. In: Cohen GC, Joly P, Heikkola E, Neittaanmäki P (eds) Mathematical and numerical aspects of wave propagation WAVES 2003. Springer, Berlin, pp 115–119. https://doi.org/10.1007/978-3-642-55856-6_18

    Chapter  Google Scholar 

  90. Diaz J, Joly P (2006) A time domain analysis of PML models in acoustics. Comput Methods Appl Mech Eng 195(29):3820–3853. https://doi.org/10.1016/j.cma.2005.02.031(Absorbing Boundary Conditions)

  91. Dmitriev MN, Lisitsa VV (2011) Application of M-PML reflectionless boundary conditions to the numerical simulation of wave propagation in anisotropic media. Part I: reflectivity. Numer Anal Appl 4(4):271–280. https://doi.org/10.1134/S199542391104001X

    Article  MATH  Google Scholar 

  92. Dmitriev MN, Lisitsa VV (2012) Application of M-PML absorbing boundary conditions to the numerical simulation of wave propagation in anisotropic media. Part II: stability. Numer Anal Appl 5(1):36–44. https://doi.org/10.1134/S1995423912010041

    Article  MATH  Google Scholar 

  93. Dohnal T (2009) Perfectly matched layers for coupled nonlinear Schrödinger equations with mixed derivatives. J Comput Phys 228(23):8752–8765. https://doi.org/10.1016/j.jcp.2009.08.023

    Article  MathSciNet  MATH  Google Scholar 

  94. Dohnal T, Hagstrom T (2007) Perfectly matched layers in photonics computations: 1D and 2D nonlinear coupled mode equations. J Comput Phys 223(2):690–710. https://doi.org/10.1016/j.jcp.2006.10.002

    Article  MathSciNet  MATH  Google Scholar 

  95. Donderici B, Teixeira FL (2008) Conformal perfectly matched layer for the mixed finite element time-domain method. IEEE Trans Antennas Propag 56(4):1017–1026. https://doi.org/10.1109/TAP.2008.919215

    Article  MathSciNet  MATH  Google Scholar 

  96. Donderici B, Teixeira FL (2008) Mixed finite-element time-domain method for transient Maxwell equations in doubly dispersive media. IEEE Trans Microw Theory Tech 56(1):113–120. https://doi.org/10.1109/TMTT.2007.912217

    Article  Google Scholar 

  97. Dong XT, Rao XS, Gan YB, Guo B, Yin WY (2004) Perfectly matched layer-absorbing boundary condition for left-handed materials. IEEE Microw Wirel Compon Lett 14(6):301–303. https://doi.org/10.1109/LMWC.2004.827104

    Article  Google Scholar 

  98. Dosopoulos S, Lee JF (2010) Interior penalty discontinuous Galerkin finite element method for the time-dependent first order Maxwell’s equations. IEEE Trans Antennas Propag 58(12):4085–4090. https://doi.org/10.1109/TAP.2010.2078445

    Article  MathSciNet  MATH  Google Scholar 

  99. Drossaert FH, Giannopoulos A (2007) A nonsplit complex frequency-shifted PML based on recursive integration for FDTD modeling of elastic waves. Geophysics 72(2):T9–T17. https://doi.org/10.1190/1.2424888

    Article  MATH  Google Scholar 

  100. Drossaert FH, Giannopoulos A (2007) Complex frequency shifted convolution PML for FDTD modelling of elastic waves. Wave Motion 44(7):593–604. https://doi.org/10.1016/j.wavemoti.2007.03.003

    Article  MathSciNet  MATH  Google Scholar 

  101. Duru K (2014) A perfectly matched layer for the time-dependent wave equation in heterogeneous and layered media. J Comput Phys 257, Part A:757–781. https://doi.org/10.1016/j.jcp.2013.10.022

    Article  MathSciNet  MATH  Google Scholar 

  102. Duru K (2016) The role of numerical boundary procedures in the stability of perfectly matched layers. SIAM J Sci Comput 38(2):A1171–A1194. https://doi.org/10.1137/140976443

    Article  MathSciNet  MATH  Google Scholar 

  103. Duru K, Kozdon JE, Kreiss G (2015) Boundary conditions and stability of a perfectly matched layer for the elastic wave equation in first order form. J Comput Phys 303:372–395. https://doi.org/10.1016/j.jcp.2015.09.048

    Article  MathSciNet  MATH  Google Scholar 

  104. Duru K, Kreiss G (2012) A well-posed and discretely stable perfectly matched layer for elastic wave equations in second order formulation. Commun Comput Phys 11(5):1643–1672. https://doi.org/10.4208/cicp.120210.240511a

    Article  MathSciNet  MATH  Google Scholar 

  105. Duru K, Kreiss G (2012) On the accuracy and stability of the perfectly matched layer in transient waveguides. J Sci Comput 53(3):642–671. https://doi.org/10.1007/s10915-012-9594-7

    Article  MathSciNet  MATH  Google Scholar 

  106. Duru K, Kreiss G (2014) Boundary waves and stability of the perfectly matched layer for the two space dimensional elastic wave equation in second order form. SIAM J Numer Anal 52(6):2883–2904. https://doi.org/10.1137/13093563X

    Article  MathSciNet  MATH  Google Scholar 

  107. Duru K, Kreiss G (2014) Efficient and stable perfectly matched layer for CEM. Appl Numer Math 76:34–47. https://doi.org/10.1016/j.apnum.2013.09.005

    Article  MathSciNet  MATH  Google Scholar 

  108. Duru K, Kreiss G (2014) Numerical interaction of boundary waves with perfectly matched layers in two space dimensional elastic waveguides. Wave Motion 51(3):445–465. https://doi.org/10.1016/j.wavemoti.2013.11.002

    Article  MathSciNet  MATH  Google Scholar 

  109. Ernst E (1998) Ellipticity loss in isotropic elasticity. J Elast 51(3):203–211. https://doi.org/10.1023/A:1007503323107

    Article  MathSciNet  MATH  Google Scholar 

  110. Fan GX, Liu QH (2000) An FDTD algorithm with perfectly matched layers for general dispersive media. IEEE Trans Antennas Propag 48(5):637–646. https://doi.org/10.1109/8.855481

    Article  MATH  Google Scholar 

  111. Fang J, Wu Z (1996) Generalized perfectly matched layer for the absorption of propagating and evanescent waves in lossless and lossy media. IEEE Trans Microw Theory Tech 44(12):2216–2222. https://doi.org/10.1109/22.556449

    Article  Google Scholar 

  112. Farrell C, Leonhardt U (2004) The perfectly matched layer in numerical simulations of nonlinear and matter waves. J Opt B Quantum Semiclass Opt 7(1):1–4. https://doi.org/10.1088/1464-4266/7/1/001

    Article  Google Scholar 

  113. Fathi A, Kallivokas LF, Poursartip B (2015) Full-waveform inversion in three-dimensional PML-truncated elastic media. Comput Methods Appl Mech Eng 296:39–72. https://doi.org/10.1016/j.cma.2015.07.008

    Article  MathSciNet  MATH  Google Scholar 

  114. Fathi A, Poursartip B, Kallivokas LF (2015) Time-domain hybrid formulations for wave simulations in three-dimensional PML-truncated heterogeneous media. Int J Numer Methods Eng 101(3):165–198. https://doi.org/10.1002/nme.4780

    Article  MathSciNet  MATH  Google Scholar 

  115. Feng H, Zhang J, Zhang W, Chen X (2017) Importance of double-pole CFS-PML for broad-band seismic wave simulation and optimal parameters selection. Geophys J Int 209(2):1148–1167. https://doi.org/10.1093/gji/ggx070

    Article  Google Scholar 

  116. Feng N, Li J (2012) Efficient DSP-higher-order PML formulations for the metal plate buried in dispersive soil half-space problem. IEEE Trans Electromagn Compat 54(5):1178–1181. https://doi.org/10.1109/TEMC.2012.2210047

    Article  Google Scholar 

  117. Feng N, Li J (2013) Novel and efficient FDTD implementation of higher-order perfectly matched layer based on ADE method. J Comput Phys 232(1):318–326. https://doi.org/10.1016/j.jcp.2012.08.012

    Article  MathSciNet  Google Scholar 

  118. Feng N, Li J, Zhao X (2013) Efficient FDTD implementations of the higher-order PML using DSP techniques for arbitrary media. IEEE Trans Antennas Propag 61(5):2623–2629. https://doi.org/10.1109/TAP.2013.2242825

    Article  MathSciNet  MATH  Google Scholar 

  119. Feng N, Liu QH (2014) Efficient implementation of multi-pole UPML using trapezoidal approximation for general media. J Appl Geophys 111:59–65. https://doi.org/10.1016/j.jappgeo.2014.09.020

    Article  Google Scholar 

  120. Feng N, Yue Y, Liu QH (2015) Direct \(Z\)-transform implementation of the CFS-PML based on memory-minimized method. IEEE Trans Microw Theory Tech 63(3):877–882. https://doi.org/10.1109/TMTT.2015.2389218

    Article  MathSciNet  Google Scholar 

  121. Feng N, Yue Y, Zhu C, Wan L, Liu QH (2015) Second-order PML: optimal choice of nth-order PML for truncating FDTD domains. J Comput Phys 285:71–83. https://doi.org/10.1016/j.jcp.2015.01.015

    Article  MathSciNet  MATH  Google Scholar 

  122. Festa G, Delavaud E, Vilotte JP (2005) Interaction between surface waves and absorbing boundaries for wave propagation in geological basins: 2D numerical simulations. Geophys Res Lett. https://doi.org/10.1029/2005GL024091

    Article  Google Scholar 

  123. Festa G, Nielsen S (2003) PML absorbing boundaries. Bull Seismol Soc Am 93(2):891–903. https://doi.org/10.1785/0120020098

    Article  Google Scholar 

  124. Festa G, Vilotte JP (2005) The Newmark scheme as velocity-stress time-staggering: an efficient PML implementation for spectral element simulations of elastodynamics. Geophys J Int 161(3):789–812. https://doi.org/10.1111/j.1365-246X.2005.02601.x

    Article  Google Scholar 

  125. Gao H, Zhang J (2008) Implementation of perfectly matched layers in an arbitrary geometrical boundary for elastic wave modelling. Geophys J Int 174(3):1029–1036. https://doi.org/10.1111/j.1365-246X.2008.03883.x

    Article  Google Scholar 

  126. Gao K, Huang L (2017) Optimal damping profile ratios for stabilization of perfectly matched layers in general anisotropic media. Geophysics 83(1):T15–T30. https://doi.org/10.1190/geo2017-0430.1

    Article  Google Scholar 

  127. Gao Y, Song H, Zhang J, Yao Z (2017) Comparison of artificial absorbing boundaries for acoustic wave equation modelling. Explor Geophys 48(1):76–93

    Article  Google Scholar 

  128. Gao Y, Zhang J, Yao Z (2015) Unsplit complex frequency shifted perfectly matched layer for second-order wave equation using auxiliary differential equations. J Acoust Soc Am 138(6):EL551–EL557. https://doi.org/10.1121/1.4938270

    Article  Google Scholar 

  129. Gedney SD (1996) An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices. IEEE Trans Antennas Propag 44(12):1630–1639. https://doi.org/10.1109/8.546249

    Article  Google Scholar 

  130. Gedney SD (1996) An anisotropic PML absorbing media for the FDTD simulation of fields in lossy and dispersive media. Electromagnetics 16(4):399–415. https://doi.org/10.1080/02726349608908487

    Article  Google Scholar 

  131. Gedney SD, Zhao B (2010) An auxiliary differential equation formulation for the complex-frequency shifted PML. IEEE Trans Antennas Propag 58(3):838–847. https://doi.org/10.1109/TAP.2009.2037765

    Article  MathSciNet  MATH  Google Scholar 

  132. Geuzaine C, Remacle JF (2009) GMSH: a 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int J Numer Methods Eng 79(11):1309–1331. https://doi.org/10.1002/nme.2579

    Article  MathSciNet  MATH  Google Scholar 

  133. Giannopoulos A (2008) An improved new implementation of complex frequency shifted PML for the FDTD method. IEEE Trans Antennas Propag 56(9):2995–3000. https://doi.org/10.1109/TAP.2008.928789

    Article  MathSciNet  MATH  Google Scholar 

  134. Giannopoulos A (2012) Unsplit implementation of higher order PMLs. IEEE Trans Antennas Propag 60(3):1479–1485. https://doi.org/10.1109/TAP.2011.2180344

    Article  MathSciNet  MATH  Google Scholar 

  135. Giannopoulos A (2018) Multipole perfectly matched layer for finite-difference time-domain electromagnetic modeling. IEEE Trans Antennas Propag 66(6):2987–2995. https://doi.org/10.1109/TAP.2018.2823864

    Article  Google Scholar 

  136. Giroux B (2012) Performance of convolutional perfectly matched layers for pseudospectral time domain poroviscoelastic schemes. Comput Geosci 45:149–160. https://doi.org/10.1016/j.cageo.2011.10.030

    Article  Google Scholar 

  137. Givoli D (1992) Numerical methods for problems in infinite domains. Studies in applied mechanics. Elsevier, Amsterdam

    MATH  Google Scholar 

  138. Givoli D (1999) Exact representations on artificial interfaces and applications in mechanics. Appl Mech Rev 52(11):333–349

    Article  Google Scholar 

  139. Givoli D (2004) High-order local non-reflecting boundary conditions: a review. Wave Motion 39(4):319–326 (New computational methods for wave propagation). https://doi.org/10.1016/j.wavemoti.2003.12.004

    Article  MathSciNet  MATH  Google Scholar 

  140. Givoli D (2008) Computational absorbing boundaries. Springer, Berlin, pp 145–166. https://doi.org/10.1007/978-3-540-77448-8_6

    Book  Google Scholar 

  141. Givoli D, Hagstrom T, Patlashenko I (2006) Finite element formulation with high-order absorbing boundary conditions for time-dependent waves. Comput Methods Appl Mech Eng 195(29):3666–3690 (Absorbing Boundary Conditions). https://doi.org/10.1016/j.cma.2005.01.021

    Article  MathSciNet  MATH  Google Scholar 

  142. Gondarenko NA, Guzdar PN, Ossakow SL, Bernhardt PA (2004) Perfectly matched layers for radio wave propagation in inhomogeneous magnetized plasmas. J Comput Phys 194(2):481–504. https://doi.org/10.1016/j.jcp.2003.09.013

    Article  MATH  Google Scholar 

  143. Grote M, Keller J (1995) Exact nonreflecting boundary conditions for the time dependent wave equation. SIAM J Appl Math 55(2):280–297. https://doi.org/10.1137/S0036139993269266

    Article  MathSciNet  MATH  Google Scholar 

  144. Grote MJ, Keller JB (1996) Nonreflecting boundary conditions for time-dependent scattering. J Comput Phys 127(1):52–65. https://doi.org/10.1006/jcph.1996.0157

    Article  MathSciNet  MATH  Google Scholar 

  145. Grote MJ, Sim I (2010) Efficient PML for the wave equation, p 16

  146. Guan W, Hu H, He X (2009) Finite-difference modeling of the monopole acoustic logs in a horizontally stratified porous formation. J Acoust Soc Am 125(4):1942–1950. https://doi.org/10.1121/1.3081518

    Article  Google Scholar 

  147. Guddati MN, Lim KW (2006) Continued fraction absorbing boundary conditions for convex polygonal domains. Int J Numer Methods Eng 66(6):949–977. https://doi.org/10.1002/nme.1574

    Article  MathSciNet  MATH  Google Scholar 

  148. Guddati MN, Tassoulas JL (2000) Continued-fraction absorbing boundary conditions for the wave equation. J Comput Acoust 08(01):139–156. https://doi.org/10.1142/S0218396X00000091

    Article  MathSciNet  MATH  Google Scholar 

  149. Hagstrom T (1999) Radiation boundary conditions for the numerical simulation of waves. Acta Numer 8:47–106. https://doi.org/10.1017/S0962492900002890

    Article  MathSciNet  MATH  Google Scholar 

  150. Hagstrom T (2003) A new construction of perfectly matched layers for hyperbolic systems with applications to the linearized Euler equations. In: Cohen GC, Joly P, Heikkola E, Neittaanmäki P (eds) Mathematical and numerical aspects of wave propagation WAVES 2003. Springer, Berlin, pp 125–129

    Chapter  Google Scholar 

  151. Hagstrom T (2003) New results on absorbing layers and radiation boundary conditions. Springer, Berlin, pp 1–42. https://doi.org/10.1007/978-3-642-55483-4_1

    Book  MATH  Google Scholar 

  152. Hagstrom T, De Castro ML, Givoli D, Tzemach D (2007) Local high-order absorbing boundary conditions for time-dependent waves in guides. J Comput Acoust 15(01):1–22. https://doi.org/10.1142/S0218396X07003184

    Article  MathSciNet  MATH  Google Scholar 

  153. Hagstrom T, Givoli D, Rabinovich D, Bielak J (2014) The double absorbing boundary method. J Comput Phys 259:220–241. https://doi.org/10.1016/j.jcp.2013.11.025

    Article  MathSciNet  MATH  Google Scholar 

  154. Hagstrom T, Hariharan S (1998) A formulation of asymptotic and exact boundary conditions using local operators. Appl Numer Math 27(4):403–416 (Special Issue on Absorbing Boundary Conditions). https://doi.org/10.1016/S0168-9274(98)00022-1

    Article  MathSciNet  MATH  Google Scholar 

  155. Hagstrom T, Lau S (2007) Radiation boundary conditions for Maxwell’s equations: a review of accurate time-domain formulations. J Compu Math 25(3):305–336

    MathSciNet  Google Scholar 

  156. Hagstrom T, Warburton T (2004) A new auxiliary variable formulation of high-order local radiation boundary conditions: corner compatibility conditions and extensions to first-order systems. New computational methods for wave propagation. Wave Motion 39(4):327–338. https://doi.org/10.1016/j.wavemoti.2003.12.007

    Article  MathSciNet  MATH  Google Scholar 

  157. Hagstrom T, Warburton T, Givoli D (2010) Radiation boundary conditions for time-dependent waves based on complete plane wave expansions. J Comput Appl Math 234(6):1988–1995. https://doi.org/10.1016/j.cam.2009.08.050

    Article  MathSciNet  MATH  Google Scholar 

  158. Halpern L, Petit-Bergez S, Rauch J (2011) The analysis of matched layers. Conflu Math 03(02):159–236. https://doi.org/10.1142/S1793744211000291

    Article  MathSciNet  MATH  Google Scholar 

  159. Halpern L, Rauch J (2016) Hyperbolic boundary value problems with trihedral corners. AIMS series in applied mathematics

  160. Han H, Wu X (2013) A survey on artificial boundary method. Sci China Math 56(12):2439–2488. https://doi.org/10.1007/s11425-013-4694-x

    Article  MathSciNet  MATH  Google Scholar 

  161. Harari I, Albocher U (2006) Studies of FE/PML for exterior problems of time-harmonic elastic waves. Comput Methods Appl Mech Eng 195(29–32):3854–3879 (Absorbing Boundary Conditions). https://doi.org/10.1016/j.cma.2005.01.024

    Article  MathSciNet  MATH  Google Scholar 

  162. Harari I, Slavutin M, Turkel E (2000) Analytical and numerical studies of a finite element PML for the Helmholtz equation. J Comput Acoust 08(01):121–137. https://doi.org/10.1142/S0218396X0000008X

    Article  MathSciNet  MATH  Google Scholar 

  163. Hastings FD, Schneider JB, Broschat SL (1996) Application of the perfectly matched layer (PML) absorbing boundary condition to elastic wave propagation. J Acoust Soc Am 100(5):3061–3069. https://doi.org/10.1121/1.417118

    Article  Google Scholar 

  164. Hayder ME, Hu FQ, Hussaini MY (1999) Toward perfectly absorbing boundary conditions for Euler equations. AIAA J 37(8):912–918. https://doi.org/10.2514/2.810

    Article  Google Scholar 

  165. He JQ, Liu QH (1999) A nonuniform cylindrical FDTD algorithm with improved PML and quasi-PML absorbing boundary conditions. IEEE Trans Geosci Remote Sens 37(2):1066–1072. https://doi.org/10.1109/36.752224

    Article  Google Scholar 

  166. He Y, Chen T, Gao J (2019) Unsplit perfectly matched layer absorbing boundary conditions for second-order poroelastic wave equations. Wave Motion. https://doi.org/10.1016/j.wavemoti.2019.01.004

    Article  MathSciNet  MATH  Google Scholar 

  167. Hesthaven J (1998) On the analysis and construction of perfectly matched layers for the linearized Euler equations. J Comput Phys 142(1):129–147. https://doi.org/10.1006/jcph.1998.5938

    Article  MathSciNet  MATH  Google Scholar 

  168. Hislop PD, Sigal IM (1996) Introduction to spectral theory with applications to Schrödinger operators. Applied mathematical sciences, vol 113. Springer, New York. https://doi.org/10.1007/978-1-4612-0741-2

    Book  MATH  Google Scholar 

  169. Hohage T, Schmidt F, Zschiedrich L (2003) Solving time-harmonic scattering problems based on the pole condition II: convergence of the PML method. SIAM J Math Anal 35(3):547–560. https://doi.org/10.1137/S0036141002406485

    Article  MathSciNet  MATH  Google Scholar 

  170. Hu FQ (1996) On absorbing boundary conditions for linearized Euler equations by a perfectly matched layer. J Comput Phys 129(1):201–219. https://doi.org/10.1006/jcph.1996.0244

    Article  MathSciNet  MATH  Google Scholar 

  171. Hu FQ (2001) A stable, perfectly matched layer for linearized Euler equations in unsplit physical variables. J Comput Phys 173(2):455–480. https://doi.org/10.1006/jcph.2001.6887

    Article  MathSciNet  MATH  Google Scholar 

  172. Hu FQ (2004) Absorbing boundary conditions. Int J Comput Fluid Dyn 18(6):513–522. https://doi.org/10.1080/10618560410001673524

    Article  MathSciNet  MATH  Google Scholar 

  173. Hu FQ (2005) A perfectly matched layer absorbing boundary condition for linearized Euler equations with a non-uniform mean flow. J Comput Phys 208(2):469–492. https://doi.org/10.1016/j.jcp.2005.02.028

    Article  MathSciNet  MATH  Google Scholar 

  174. Hu FQ (2008) Development of PML absorbing boundary conditions for computational aeroacoustics: a progress review. Comput Fluids 37(4):336–348. https://doi.org/10.1016/j.compfluid.2007.02.012

    Article  MathSciNet  MATH  Google Scholar 

  175. Hu FQ, Li X, Lin D (2008) Absorbing boundary conditions for nonlinear Euler and Navier-Stokes equations based on the perfectly matched layer technique. J Comput Phys 227(9):4398–4424. https://doi.org/10.1016/j.jcp.2008.01.010

    Article  MathSciNet  MATH  Google Scholar 

  176. Hughes TJR (1987) The finite element method? Linear static and dynamic finite element analysis. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  177. Hwang KP, Jin JM (1999) Application of a hyperbolic grid generation technique to a conformal PML implementation. IEEE Microw Guid Wave Lett 9(4):137–139. https://doi.org/10.1109/75.763239

    Article  Google Scholar 

  178. Isakson MJ, Chotiros NP (2011) Finite element modeling of reverberation and transmission loss in shallow water waveguides with rough boundaries. J Acoust Soc Am 129(3):1273–1279. https://doi.org/10.1121/1.3531810

    Article  Google Scholar 

  179. Jiao D, Michielssen E, Riley DJ (2003) Time-domain finite-element simulation of three-dimensional scattering and radiation problems using perfectly matched layers. IEEE Trans Antennas Propag 51(2):296–305. https://doi.org/10.1109/TAP.2003.809096

    Article  Google Scholar 

  180. Jiao D, Jin JM (2002) An effective algorithm for implementing perfectly matched layers in time-domain finite-element simulation of open-region EM problems. IEEE Trans Antennas Propag 50(11):1615–1623. https://doi.org/10.1109/TAP.2002.803987

    Article  Google Scholar 

  181. Wu J-Y, Kingsland DM, Lee JFL (1997) A comparison of anisotropic PML to Berenger’s PML and its application to the finite-element method for EM scattering. IEEE Trans Antennas Propag 45(1):40–50. https://doi.org/10.1109/8.554239

    Article  Google Scholar 

  182. Johnson SG (2010) Notes on perfectly matched layers (PMLs). Techreport, MIT

  183. Joly P (2012) An elementary introduction to the construction and the analysis of perfectly matched layers for time domain wave propagation. SeMA J 57(1):5–48. https://doi.org/10.1007/BF03322599

    Article  MathSciNet  MATH  Google Scholar 

  184. Kachanovska M (2017) Stable perfectly matched layers for a class of anisotropic dispersive models. Part II: energy estimates. This work was supported by a public grant as part of the Investissement d’avenir project, reference ANR-11-LABX-0056-LMH, LabEx LMH, as well as a co-financing program PRESTIG

  185. Kaltenbacher B, Kaltenbacher M, Sim I (2013) A modified and stable version of a perfectly matched layer technique for the 3-d second order wave equation in time domain with an application to aeroacoustics. J Comput Phys 235:407–422. https://doi.org/10.1016/j.jcp.2012.10.016

    Article  MathSciNet  MATH  Google Scholar 

  186. Kang JW, Kallivokas LF (2010) Mixed unsplit-field perfectly matched layers for transient simulations of scalar waves in heterogeneous domains. Comput Geosci 14(4):623–648. https://doi.org/10.1007/s10596-009-9176-4

    Article  MATH  Google Scholar 

  187. Kantartzis NV, Tsiboukis TD (1997) A comparative study of the Berenger perfectly matched layer, the superabsorption technique and several higher-order ABC’s for the FDTD algorithm in two and three dimensional problems. IEEE Trans Magn 33(2):1460–1463. https://doi.org/10.1109/20.582535

    Article  Google Scholar 

  188. Katsibas TK, Antonopoulos CS (2002) An efficient PML absorbing medium in FDTD simulations of acoustic scattering in lossy media. In: Proceedings of the 2002 IEEE ultrasonics symposium, vol 1, pp 551–554. https://doi.org/10.1109/ULTSYM.2002.1193463

  189. Katz DS, Thiele ET, Taflove A (1994) Validation and extension to three dimensions of the Berenger PML absorbing boundary condition for FD-TD meshes. IEEE Microw Guid Wave Lett 4(8):268–270. https://doi.org/10.1109/75.311494

    Article  Google Scholar 

  190. Kaufmann T, Sankaran K, Fumeaux C, Vahldieck R (2008) A review of perfectly matched absorbers for the finite-volume time-domain method. Appl Comput Electromagn Soc J 23(3):184–192

    Google Scholar 

  191. Kausel E, de Oliveira Barbosa JM (2012) PMLs: a direct approach. Int J Numer Methods Eng 90(3):343–352. https://doi.org/10.1002/nme.3322

    Article  MathSciNet  MATH  Google Scholar 

  192. Komatitsch D, Martin R (2007) An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation. GEOPHYSICS 72(5):SM155–SM167. https://doi.org/10.1190/1.2757586

    Article  Google Scholar 

  193. Komatitsch D, Tromp J (2003) A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation. Geophys J Int 154(1):146–153. https://doi.org/10.1046/j.1365-246X.2003.01950.x

    Article  Google Scholar 

  194. Kormann J, Cobo P, Prieto A (2008) Perfectly matched layers for modelling seismic oceanography experiments. J Sound Vib 317(1–2):354–365. https://doi.org/10.1016/j.jsv.2008.03.024

    Article  Google Scholar 

  195. Kreiss G, Duru K (2013) Discrete stability of perfectly matched layers for anisotropic wave equations in first and second order formulation. BIT Numer Math 53(3):641–663. https://doi.org/10.1007/s10543-013-0426-4

    Article  MathSciNet  MATH  Google Scholar 

  196. Kreiss H, Lorenz J (2004) Initial-boundary value problems and the Navier–Stokes equations. Soc Ind Appl Math. https://doi.org/10.1137/1.9780898719130

    Article  MATH  Google Scholar 

  197. Kreiss HO, Lorenz J (eds) (1989) Initial-boundary value problems and the Navier-Stokes equations. Pure and applied mathematics, vol 136. Elsevier, Amsterdam. https://doi.org/10.1016/S0079-8169(08)62304-1

    Book  Google Scholar 

  198. Kristek J, Moczo P, Galis M (2009) A brief summary of some PML formulations and discretizations for the velocity-stress equation of seismic motion. Stud Geophys Geod 53(4):459–474. https://doi.org/10.1007/s11200-009-0034-6

    Article  Google Scholar 

  199. Kucukcoban S, Kallivokas L (2010) A mixed perfectly-matched-layer for transient wave simulations in axisymmetric elastic media. Comput Model Eng Sci CMES 64(2):109–145. https://doi.org/10.3970/cmes.2010.064.109

    Article  MathSciNet  MATH  Google Scholar 

  200. Kucukcoban S, Kallivokas L (2011) Mixed perfectly-matched-layers for direct transient analysis in 2d elastic heterogeneous media. Comput Methods Appl Mech Eng 200(1–4):57–76. https://doi.org/10.1016/j.cma.2010.07.013

    Article  MathSciNet  MATH  Google Scholar 

  201. Kucukcoban S, Kallivokas L (2013) A symmetric hybrid formulation for transient wave simulations in PML-truncated heterogeneous media. Wave Motion 50(1):57–79. https://doi.org/10.1016/j.wavemoti.2012.06.004

    Article  MathSciNet  MATH  Google Scholar 

  202. Kuzuoglu M, Mittra R (1996) Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers. IEEE Microw Guid Wave Lett 6(12):447–449. https://doi.org/10.1109/75.544545

    Article  Google Scholar 

  203. Kuzuoglu M, Mittra R (1997) Investigation of nonplanar perfectly matched absorbers for finite-element mesh truncation. IEEE Trans Antennas Propag 45(3):474–486. https://doi.org/10.1109/8.558662

    Article  Google Scholar 

  204. Lamb H (1904) I. On the propagation of tremors over the surface of an elastic solid. Philos Trans R Soc Lond A Math Phys Eng Sci 203(359–371):1–42. https://doi.org/10.1098/rsta.1904.0013

    Article  MATH  Google Scholar 

  205. Lassas M, Liukkonen J, Somersalo E (2001) Complex Riemannian metric and absorbing boundary conditions. Journal de Mathématiques Pures et Appliquées 80(7):739–768. https://doi.org/10.1016/S0021-7824(01)01214-4

    Article  MathSciNet  MATH  Google Scholar 

  206. Lassas M, Somersalo E (1998) On the existence and convergence of the solution of PML equations. Computing 60(3):229–241. https://doi.org/10.1007/BF02684334

    Article  MathSciNet  MATH  Google Scholar 

  207. Lassas M, Somersalo E (2001) Analysis of the PML equations in general convex geometry. Proc R Soc Edinb Sect A Math 131(5):1183–1207. https://doi.org/10.1017/S0308210500001335

    Article  MathSciNet  MATH  Google Scholar 

  208. Lavelle J, Thacker W (2008) A pretty good sponge: dealing with open boundaries in limited-area ocean models. Ocean Model 20(3):270–292. https://doi.org/10.1016/j.ocemod.2007.10.002

    Article  Google Scholar 

  209. Levy MF (2001) Perfectly matched layer truncation for parabolic wave equation models. Proc Math Phys Eng Sci 457(2015):2609–2624

    Article  MathSciNet  Google Scholar 

  210. Li J, Dai J (2006) Z-transform implementations of the CFS-PML. IEEE Antennas Wirel Propag Lett 5:410–413. https://doi.org/10.1109/LAWP.2006.883081

    Article  Google Scholar 

  211. Li J, Dai J (2007) An efficient implementation of the stretched coordinate perfectly matched layer. IEEE Microw Wirel Compon Lett 17(5):322–324. https://doi.org/10.1109/LMWC.2007.895690

    Article  Google Scholar 

  212. Li J, Dai J (2007) Efficient implementation of the stretched co-ordinate perfectly matched layer based on the Z-transform method. IET Microw Antennas Propag 1(3):645–650. https://doi.org/10.1049/iet-map:20060307

    Article  Google Scholar 

  213. Li J, Dai J (2008) Modified Z-transform-based FDTD algorithm for the anisotropic perfectly matched layer. Int J Numer Model Electron Netw Dev Fields 21(5):279–286. https://doi.org/10.1002/jnm.666

    Article  MATH  Google Scholar 

  214. Li J, Innanen KA, Tao G, Zhang K, Lines L (2017) Wavefield simulation of 3D borehole dipole radiation. Geophysics 82(3):D155–D169. https://doi.org/10.1190/geo2016-0145.1

    Article  Google Scholar 

  215. Li J, Innanen KA, Wang B (2018) A new second order absorbing boundary layer formulation for anisotropic-elastic wavefield simulation. Pure Appl Geophys. https://doi.org/10.1007/s00024-018-2046-z

    Article  Google Scholar 

  216. Li Y, Matar OB (2010) Convolutional perfectly matched layer for elastic second-order wave equation. J Acoust Soc Am 127(3):1318–1327. https://doi.org/10.1121/1.3290999

    Article  Google Scholar 

  217. Lions JL, Métral J, Vacus O (2002) Well-posed absorbing layer for hyperbolic problems. Numer Math 92(3):535–562. https://doi.org/10.1007/s002110100263

    Article  MathSciNet  MATH  Google Scholar 

  218. Lisitsa V (2008) Optimal discretization of PML for elasticity problems. ETNA Electr Trans Numer Anal 30:258–277

    MathSciNet  MATH  Google Scholar 

  219. Liu P, Jin YQ (2004) Numerical simulation of bistatic scattering from a target at low altitude above rough sea surface under an EM-wave incidence at low grazing angle by using the finite element method. IEEE Trans Antennas Propag 52(5):1205–1210. https://doi.org/10.1109/TAP.2004.827497

    Article  Google Scholar 

  220. Liu P, Xu JD, Wan W (2001) A finite-element realization of a 3-D conformal PML. Microw Opt Technol Lett 30(3):170–173. https://doi.org/10.1002/mop.1255

    Article  Google Scholar 

  221. Liu QH (1999) Perfectly matched layers for elastic waves in cylindrical and spherical coordinates. J Acoust Soc Am 105(4):2075–2084. https://doi.org/10.1121/1.426812

    Article  Google Scholar 

  222. Liu QH (2009) Application of PML to electromagnetics, acoustics, elasticity, and quantum mechanics. In: 2009 IEEE antennas and propagation society international symposium, pp 1–4. https://doi.org/10.1109/APS.2009.5172204

  223. Liu QH, He JQ (1998) Quasi-PML for waves in cylindrical coordinates. Microw Opt Technol Lett 19(2):107–111

    Article  Google Scholar 

  224. Liu QH, Sinha BK (2003) A 3D cylindrical PML/FDTD method for elastic waves in fluid-filled pressurized boreholes in triaxially stressed formations. Geophysics 68(5):1731–1743. https://doi.org/10.1190/1.1620646

    Article  Google Scholar 

  225. Liu QH, Tao J (1997) The perfectly matched layer for acoustic waves in absorptive media. J Acoust Soc Am 102(4):2072–2082. https://doi.org/10.1121/1.419657

    Article  Google Scholar 

  226. Loh PR, Oskooi AF, Ibanescu M, Skorobogatiy M, Johnson SG (2009) Fundamental relation between phase and group velocity, and application to the failure of perfectly matched layers in backward-wave structures. Phys Rev E 79:065601. https://doi.org/10.1103/PhysRevE.79.065601

    Article  Google Scholar 

  227. Lou Z, Correia D, Jin J (2007) Second-order perfectly matched layers for the time-domain finite-element method. IEEE Trans Antennas Propag 55(3):1000–1004. https://doi.org/10.1109/TAP.2007.891876

    Article  MathSciNet  MATH  Google Scholar 

  228. Luebbers RJ, Hunsberger F (1992) FDTD for Nth-order dispersive media. IEEE Trans Antennas Propag 40(11):1297–1301. https://doi.org/10.1109/8.202707

    Article  Google Scholar 

  229. Ma S, Liu P (2006) Modeling of the perfectly matched layer absorbing boundaries and intrinsic attenuation in explicit finite-element methods. Bull Seismol Soc Am 96(5):1779–1794. https://doi.org/10.1785/0120050219

    Article  Google Scholar 

  230. Ma X, Yang D, Huang X, Zhou Y (2018) Nonsplit complex-frequency shifted perfectly matched layer combined with symplectic methods for solving second-order seismic wave equations-Part 1: method. Geophysics 83(6):T301–T311. https://doi.org/10.1190/geo2017-0603.1

    Article  Google Scholar 

  231. Ma Y, Yu J, Wang Y (2014) A novel unsplit perfectly matched layer for the second-order acoustic wave equation. Ultrasonics 54(6):1568–1574. https://doi.org/10.1016/j.ultras.2014.03.016

    Article  Google Scholar 

  232. Maloney J, Kesler M, Smith G (1997) Generalization of PML to cylindrical geometries. In: Proceedings of the thirteenth annual review of progress in applied computational electromagnetics, vol 2, pp 900–908

  233. Marcinkovich C, Olsen K (2003) On the implementation of perfectly matched layers in a three-dimensional fourth-order velocity-stress finite difference scheme. J Geophys Res Solid Earth 108(B5):95. https://doi.org/10.1029/2002JB002235.2276

    Article  Google Scholar 

  234. Martin R, Komatitsch D (2009) An unsplit convolutional perfectly matched layer technique improved at grazing incidence for the viscoelastic wave equation. Geophys J Int 179(1):333–344. https://doi.org/10.1111/j.1365-246X.2009.04278.x

    Article  Google Scholar 

  235. Martin R, Komatitsch D, Ezziani A (2008) An unsplit convolutional perfectly matched layer improved at grazing incidence for seismic wave propagation in poroelastic media. Geophysics 73(4):T51–T61. https://doi.org/10.1190/1.2939484

    Article  Google Scholar 

  236. Martin R, Komatitsch D, Gedney SD (2008) A variational formulation of a stabilized unsplit convolutional perfectly matched layer for the isotropic or anisotropic seismic wave equation. Comput Model Eng Sci CMES 37(3):274–304

    MathSciNet  Google Scholar 

  237. Martin R, Komatitsch D, Gedney SD, Bruthiaux E (2010) A high-order time and space formulation of the unsplit perfectly matched layer for the seismic wave equation using Auxiliary Differential Equations (ADE-PML). Comput Model Eng Sci CMES 56(1):17–42. https://doi.org/10.3970/cmes.2010.056.017

    Article  MathSciNet  MATH  Google Scholar 

  238. Matuszyk P, Demkowicz L, Torres-Verdin C (2012) Solution of coupled acoustic-elastic wave propagation problems with anelastic attenuation using automatic hp-adaptivity. Comput Methods Appl Mech Eng 213–216:299–313. https://doi.org/10.1016/j.cma.2011.12.004

    Article  MathSciNet  MATH  Google Scholar 

  239. Matuszyk PJ, Demkowicz LF (2013) Parametric finite elements, exact sequences and perfectly matched layers. Comput Mech 51(1):35–45. https://doi.org/10.1007/s00466-012-0702-1

    Article  MathSciNet  MATH  Google Scholar 

  240. Matzen R (2011) An efficient finite element time-domain formulation for the elastic second-order wave equation: A non-split complex frequency shifted convolutional PML. Int J Numer Methods Eng 88(10):951–973. https://doi.org/10.1002/nme.3205

    Article  MathSciNet  MATH  Google Scholar 

  241. Mennemann JF, Jüngel A (2014) Perfectly Matched Layers versus discrete transparent boundary conditions in quantum device simulations. J Comput Phys 275:1–24. https://doi.org/10.1016/j.jcp.2014.06.049

    Article  MathSciNet  MATH  Google Scholar 

  242. Meza-Fajardo KC, Papageorgiou AS (2008) A nonconvolutional, split-field, perfectly matched layer for wave propagation in isotropic and anisotropic elastic media: stability analysis. Bull Seismol Soc Am 98(4):1811–1836. https://doi.org/10.1785/0120070223

    Article  Google Scholar 

  243. Meza-Fajardo KC, Papageorgiou AS (2010) On the stability of a non-convolutional perfectly matched layer for isotropic elastic media. Soil Dyn Earthq Eng 30(3):68–81. https://doi.org/10.1016/j.soildyn.2009.09.002

    Article  Google Scholar 

  244. Meza-Fajardo KC, Papageorgiou AS (2012) Study of the accuracy of the multiaxial perfectly matched layer for the elastic-wave equation. Bull Seismol Soc Am 102(6):2458. https://doi.org/10.1785/0120120061

    Article  Google Scholar 

  245. Michler C, Demkowicz L, Kurtz J, Pardo D (2007) Improving the performance of perfectly matched layers by means of HP-adaptivity. Numer Methods Partial Differ Equ 23(4):832–858. https://doi.org/10.1002/num.20252

    Article  MathSciNet  MATH  Google Scholar 

  246. Modave A, Deleersnijder É, Delhez ÉJM (2010) On the parameters of absorbing layers for shallow water models. Ocean Dyn 60(1):65–79. https://doi.org/10.1007/s10236-009-0243-0

    Article  Google Scholar 

  247. Modave A, Delhez E, Geuzaine C (2014) Optimizing perfectly matched layers in discrete contexts. Int J Numer Methods Eng 99(6):410–437. https://doi.org/10.1002/nme.4690

    Article  MathSciNet  MATH  Google Scholar 

  248. Modave A, Lambrechts J, Geuzaine C (2017) Perfectly matched layers for convex truncated domains with discontinuous Galerkin time domain simulations. Comput Math Appl 73(4):684–700. https://doi.org/10.1016/j.camwa.2016.12.027

    Article  MathSciNet  MATH  Google Scholar 

  249. Modave A, Kameni A, Lambrechts J, Delhez E, Pichon L, Geuzaine C (2013) An optimum PML for scattering problems in the time domain. Eur Phys J Appl Phys 64(2):24502. https://doi.org/10.1051/epjap/2013120447

    Article  Google Scholar 

  250. Moerloose JD, Stuchly MA (1995) Behavior of Berenger’s ABC for evanescent waves. IEEE Microw Guid Wave Lett 5(10):344–346. https://doi.org/10.1109/75.465042

    Article  Google Scholar 

  251. Nataf F (2005) New constructions of perfectly matched layers for the linearized Euler equations. CR Math 340(10):775–778. https://doi.org/10.1016/j.crma.2005.04.013

    Article  MathSciNet  MATH  Google Scholar 

  252. Nataf F (2006) A new approach to perfectly matched layers for the linearized Euler system. J Comput Phys 214(2):757–772. https://doi.org/10.1016/j.jcp.2005.10.014

    Article  MathSciNet  MATH  Google Scholar 

  253. Navarro EA, Wu C, Chung PY, Litva J (1994) Application of PML superabsorbing boundary condition to non-orthogonal FDTD method. Electron Lett 30(20):1654–1656. https://doi.org/10.1049/el:19941139

    Article  Google Scholar 

  254. Navon IM, Neta B, Hussaini MY (2004) A perfectly matched layer approach to the linearized shallow water equations models. Mon Weather Rev 132(6):1369–1378

    Article  Google Scholar 

  255. Nehrbass JW, Lee JF, Lee R (1996) Stability Analysis for Perfectly Matched Layered Absorbers. Electromagnetics 16(4):385–397. https://doi.org/10.1080/02726349608908486

    Article  Google Scholar 

  256. Newmark NM (1959) A method of computation for structural dynamics. J Eng Mech Div 85(3):67–94

    Article  Google Scholar 

  257. Nissen A, Kreiss G (2011) An optimized perfectly matched layer for the Schrödinger equation. Commun Comput Phys 9(1):147–179. https://doi.org/10.4208/cicp.010909.010410a

    Article  MathSciNet  MATH  Google Scholar 

  258. de Oliveira RMS, Sobrinho CLSS (2007) UPML formulation for truncating conductive media in curvilinear coordinates. Numer Algorithms 46(4):295–319. https://doi.org/10.1007/s11075-007-9139-6

    Article  MathSciNet  MATH  Google Scholar 

  259. Oskooi AF, Zhang L, Avniel Y, Johnson SG (2008) The failure of perfectly matched layers, and towards their redemption by adiabatic absorbers. Opt Express 16(15):11376–11392. https://doi.org/10.1364/OE.16.011376

    Article  Google Scholar 

  260. Ozgun O, Kuzuoglu M (2006) Locally-conformal perfectly matched layer implementation for finite element mesh truncation. Microw Opt Technol Lett 48(9):1836–1839. https://doi.org/10.1002/mop.21788

    Article  Google Scholar 

  261. Ozgun O, Kuzuoglu M (2007) Non-Maxwellian locally-conformal PML absorbers for finite element mesh truncation. IEEE Trans Antennas Propag 55(3):931–937. https://doi.org/10.1109/TAP.2007.891865

    Article  MathSciNet  MATH  Google Scholar 

  262. Parrish SA, Hu FQ (2009) Pml absorbing boundary conditions for the linearized and nonlinear Euler equations in the case of oblique mean flow. Int J Numer Methods Fluids 60(5):565–589. https://doi.org/10.1002/fld.1905

    Article  MathSciNet  MATH  Google Scholar 

  263. Pérez Solano CA, Donno D, Chauris H (2016) Finite-difference strategy for elastic wave modelling on curved staggered grids. Comput Geosci 20(1):245–264. https://doi.org/10.1007/s10596-016-9561-8

    Article  MathSciNet  MATH  Google Scholar 

  264. Petropoulos PG (1998) On the termination of the perfectly matched layer with local absorbing boundary conditions. J Comput Phys 143(2):665–673. https://doi.org/10.1006/jcph.1998.5979

    Article  MATH  Google Scholar 

  265. Petropoulos PG (2000) Reflectionless Sponge layers as absorbing boundary conditions for the numerical solution of Maxwell equations in rectangular, cylindrical, and spherical coordinates. SIAM J Appl Math 60(3):1037–1058. https://doi.org/10.1137/S0036139998334688

    Article  MathSciNet  MATH  Google Scholar 

  266. Petropoulos PG (2003) An analytical study of the discrete perfectly matched layer for the time-domain Maxwell equations in cylindrical coordinates. IEEE Trans Antennas Propag 51(7):1671–1675. https://doi.org/10.1109/TAP.2003.813626

    Article  Google Scholar 

  267. Pinaud O (2015) Absorbing layers for the Dirac equation. J Comput Phys 289:169–180. https://doi.org/10.1016/j.jcp.2015.02.049

    Article  MathSciNet  MATH  Google Scholar 

  268. Ping P, Xu Y, Zhang Y, Yang B (2014) Seismic wave modeling in viscoelastic VTI media using spectral element method. Earthq Sci 27(5):553–565. https://doi.org/10.1007/s11589-014-0094-8

    Article  Google Scholar 

  269. Ping P, Zhang Y, Xu Y (2014) A multiaxial perfectly matched layer (M-PML) for the long-time simulation of elastic wave propagation in the second-order equations. J Appl Geophys 101:124–135. https://doi.org/10.1016/j.jappgeo.2013.12.006

    Article  Google Scholar 

  270. Ping P, Zhang Y, Xu Y, Chu R (2016) Efficiency of perfectly matched layers for seismic wave modeling in second-order viscoelastic equations. Geophys J Int 207(3):1367–1386. https://doi.org/10.1093/gji/ggw337

    Article  Google Scholar 

  271. Prather DW, Shi S (1999) Formulation and application of the finite-difference time-domain method for the analysis of axially symmetric diffractive optical elements. J Opt Soc Am A 16(5):1131–1142. https://doi.org/10.1364/JOSAA.16.001131

    Article  Google Scholar 

  272. Prokopidis KP (2008) On the development of efficient fdtd-pml formulations for general dispersive media. Int J Numer Model Electron Netw Dev Fields 21(6):395–411. https://doi.org/10.1002/jnm.678

    Article  MATH  Google Scholar 

  273. Prokopidis KP (2013) A higher-order spatial FDTD scheme with CFS PML for 3D numerical simulation of wave propagation in cold plasma. arXiv e-prints

  274. Qi Q, Geers TL (1998) Evaluation of the perfectly matched layer for computational acoustics. J Comput Phys 139(1):166–183. https://doi.org/10.1006/jcph.1997.5868

    Article  MATH  Google Scholar 

  275. Qin Z, Lu M, Zheng X, Yao Y, Zhang C, Song J (2009) The implementation of an improved NPML absorbing boundary condition in elastic wave modeling. Appl Geophys 6(2):113–121. https://doi.org/10.1007/s11770-009-0012-3

    Article  Google Scholar 

  276. Rabinovich D, Givoli D, Bécache E (2010) Comparison of high-order absorbing boundary conditions and perfectly matched layers in the frequency domain. Int J Numer Methods Biomed Eng 26(10):1351–1369. https://doi.org/10.1002/cnm.1394

    Article  MathSciNet  MATH  Google Scholar 

  277. Rahmouni AN (2004) An algebraic method to develop well-posed PML models: absorbing layers, perfectly matched layers, linearized Euler equations. J Comput Phys 197(1):99–115. https://doi.org/10.1016/j.jcp.2003.11.019

    Article  MathSciNet  MATH  Google Scholar 

  278. Ramadan O (2003) Auxiliary differential equation formulation: an efficient implementation of the perfectly matched layer. IEEE Microw Wirel Compon Lett 13(2):69–71. https://doi.org/10.1109/LMWC.2003.808706

    Article  Google Scholar 

  279. Ramadan O (2003) Digital filtering technique for the FDTD implementation of the anisotropic perfectly matched layer. IEEE Microw Wirel Compon Lett 13(8):340–342. https://doi.org/10.1109/LMWC.2003.815691

    Article  Google Scholar 

  280. Ramadan O (2003) Z-transform-based FDTD algorithm for anisotropic perfectly matched layer. Electron Lett 39(22):1570–1572. https://doi.org/10.1049/el:20031017

    Article  Google Scholar 

  281. Ramadan O (2006) Generalized 3-D DSP-based FDTD algorithm for modelling the APML. Electr Eng 88(5):327–335. https://doi.org/10.1007/s00202-004-0288-5

    Article  Google Scholar 

  282. Ramadan O, Oztoprak AY (2002) DSP techniques for implementation of perfectly matched layer for truncating FDTD domains. Electron Lett 38(5):211–212. https://doi.org/10.1049/el:20020173

    Article  Google Scholar 

  283. Rao Y, Wang Y (2013) Seismic waveform simulation with pseudo-orthogonal grids for irregular topographic models. Geophys J Int 194(3):1778–1788. https://doi.org/10.1093/gji/ggt190

    Article  Google Scholar 

  284. Rappaport CM (1995) Perfectly matched absorbing boundary conditions based on anisotropic lossy mapping of space. IEEE Microw Guid Wave Lett 5(3):90–92. https://doi.org/10.1109/75.366463

    Article  Google Scholar 

  285. Rappaport CM (1996) Interpreting and improving the PML absorbing boundary condition using anisotropic lossy mapping of space. IEEE Trans Magn 32(3):968–974. https://doi.org/10.1109/20.497403

    Article  Google Scholar 

  286. Roden JA, Gedney S (2000) An efficient FDTD implementation of the PML with CFS in general media. In: IEEE antennas and propagation society international symposium. Transmitting waves of progress to the next millennium. 2000 digest. Held in conjunction with: USNC/URSI National Radio Science Meeting C, vol 3, pp 1362–1365. https://doi.org/10.1109/APS.2000.874457

  287. Roden JA, Gedney SD (1997) Efficient implementation of the uniaxial-based PML media in three-dimensional nonorthogonal coordinates with the use of the FDTD technique. Microw Opt Technol Lett 14(2):71–75

    Article  Google Scholar 

  288. Roden JA, Gedney SD (2000) Convolution PML (CPML): an efficient FDTD implementation of the CFS-PML for arbitrary media. Microw Opt Technol Lett 27(5):334–339

    Article  Google Scholar 

  289. Rudin W (1974) Real and complex analysis. Higher mathematics. McGraw-Hill Education series. McGraw-Hill, New York

    Google Scholar 

  290. Rylander T, Jin JM (2004) Perfectly matched layer for the time domain finite element method. J Comput Phys 200(1):238–250. https://doi.org/10.1016/j.jcp.2004.03.016

    Article  MATH  Google Scholar 

  291. Sacks ZS, Kingsland DM, Lee R, Lee JF (1995) A perfectly matched anisotropic absorber for use as an absorbing boundary condition. IEEE Trans Antennas Propag 43(12):1460–1463. https://doi.org/10.1109/8.477075

    Article  Google Scholar 

  292. Sagiyama K, Govindjee S, Persson PO (2014) An efficient time-domain perfectly matched layers formulation for elastodynamics on spherical domains. Int J Numer Methods Eng 100(6):419–441. https://doi.org/10.1002/nme.4740

    Article  MathSciNet  MATH  Google Scholar 

  293. Salete E, Benito J, Ureña F, Gavete L, Ureña M, García A (2017) Stability of perfectly matched layer regions in generalized finite difference method for wave problems. J Comput Appl Math 312:231–239 (ICMCMST 2015). https://doi.org/10.1016/j.cam.2016.05.027

    Article  MathSciNet  MATH  Google Scholar 

  294. Savadatti S, Guddati MN (2010) Absorbing boundary conditions for scalar waves in anisotropic media. Part 1: time harmonic modeling. J Comput Phys 229(19):6696–6714. https://doi.org/10.1016/j.jcp.2010.05.018

    Article  MathSciNet  MATH  Google Scholar 

  295. Savadatti S, Guddati MN (2010) Absorbing boundary conditions for scalar waves in anisotropic media. Part 2: time-dependent modeling. J Comput Phys 229(18):6644–6662. https://doi.org/10.1016/j.jcp.2010.05.017

    Article  MathSciNet  MATH  Google Scholar 

  296. Schmidt K, Diaz J, Heier C (2015) Non-conforming Galerkin finite element methods for local absorbing boundary conditions of higher order. Comput Math Appl 70(9):2252–2269. https://doi.org/10.1016/j.camwa.2015.08.034

    Article  MathSciNet  MATH  Google Scholar 

  297. Shi L, Zhou Y, Wang JM, Zhuang M, Liu N, Liu QH (2016) Spectral element method for elastic and acoustic waves in frequency domain. J Comput Phys 327:19–38. https://doi.org/10.1016/j.jcp.2016.09.036

    Article  MathSciNet  MATH  Google Scholar 

  298. Shi Y, Li Y, Liang CH (2006) Perfectly matched layer absorbing boundary condition for truncating the boundary of the left-handed medium. Microw Opt Technol Lett 48(1):57–63. https://doi.org/10.1002/mop.21260

    Article  Google Scholar 

  299. Shirron JJ, Giddings TE (2006) A finite element model for acoustic scattering from objects near a fluid-fluid interface. Comput Methods Appl Mech Eng 196(1):279–288. https://doi.org/10.1016/j.cma.2006.07.009

    Article  MATH  Google Scholar 

  300. Simon B (1978) Resonances and complex scaling: a rigorous overview. Int J Quantum Chem 14(4):529–542. https://doi.org/10.1002/qua.560140415

    Article  Google Scholar 

  301. Singer I, Turkel E (2004) A perfectly matched layer for the Helmholtz equation in a semi-infinite strip. J Comput Phys 201(2):439–465. https://doi.org/10.1016/j.jcp.2004.06.010

    Article  MathSciNet  MATH  Google Scholar 

  302. Sjögreen B, Petersson NA (2005) Perfectly matched layers for Maxwell’s equations in second order formulation. J Comput Phys 209(1):19–46. https://doi.org/10.1016/j.jcp.2005.03.011

    Article  MathSciNet  MATH  Google Scholar 

  303. Skelton EA, Adams SD, Craster RV (2007) Guided elastic waves and perfectly matched layers. Wave Motion 44(7):573–592. https://doi.org/10.1016/j.wavemoti.2007.03.001

    Article  MathSciNet  MATH  Google Scholar 

  304. Song R, Ma J, Wang K (2005) The application of the nonsplitting perfectly matched layer in numerical modeling of wave propagation in poroelastic media. Appl Geophys 2(4):216–222. https://doi.org/10.1007/s11770-005-0027-3

    Article  Google Scholar 

  305. Sun X, Jiang Z, Hu X, Zhuang G, Jiang J, Guo W (2015) Perfectly matched layer absorbing boundary condition for nonlinear two-fluid plasma equations. J Comput Phys 286:12–142. https://doi.org/10.1016/j.jcp.2015.01.033

    Article  MathSciNet  MATH  Google Scholar 

  306. Taflove A, Hagness SC (2005) Computational electrodynamics: the finite-difference time-domain method. Artech House, Norwood

    MATH  Google Scholar 

  307. Tam CK, Auriault L, Cambuli F (1998) Perfectly matched layer as an absorbing boundary condition for the linearized Euler equations in open and ducted domains. J Comput Phys 144(1):213–234. https://doi.org/10.1006/jcph.1998.5997

    Article  MathSciNet  MATH  Google Scholar 

  308. Teixeira F, Chew W (1999) Differential forms, metrics, and the reflectionless absorption of electromagnetic waves. J Electromagn Waves Appl 13(5):665–686. https://doi.org/10.1163/156939399X01104

    Article  MathSciNet  MATH  Google Scholar 

  309. Teixeira FL, Chew WC (1997) PML-FDTD in cylindrical and spherical grids. IEEE Microw Guid Wave Lett 7(9):285–287. https://doi.org/10.1109/75.622542

    Article  Google Scholar 

  310. Teixeira FL, Chew WC (1997) Systematic derivation of anisotropic PML absorbing media in cylindrical and spherical coordinates. IEEE Microw Guid Wave Lett 7(11):371–373. https://doi.org/10.1109/75.641424

    Article  Google Scholar 

  311. Teixeira FL, Chew WC (1998) Analytical derivation of a conformal perfectly matched absorber for electromagnetic waves. Microw Opt Technol Lettd 17(4):231–236

    Article  Google Scholar 

  312. Teixeira FL, Chew WC (1998) Extension of the PML absorbing boundary condition to 3D spherical coordinates: scalar case. IEEE Trans Magn 34(5):2680–2683. https://doi.org/10.1109/20.717621

    Article  Google Scholar 

  313. Teixeira FL, Chew WC (1998) General closed-form PML constitutive tensors to match arbitrary bianisotropic and dispersive linear media. IEEE Microw Guid Wave Lett 8(6):223–225. https://doi.org/10.1109/75.678571

    Article  Google Scholar 

  314. Teixeira FL, Chew WC (1999) On causality and dynamic stability of perfectly matched layers for FDTD simulations. IEEE Trans Microw Theory Tech 47(6):775–785. https://doi.org/10.1109/22.769350

    Article  Google Scholar 

  315. Teixeira FL, Chew WC (1999) Unified analysis of perfectly matched layers using differential forms. Microw Opt Technol Lett 20(2):124–126

    Article  Google Scholar 

  316. Teixeira FL, Chew WC (2000) Complex space approach to perfectly matched layers: a review and some new developments. Int J Numer Model Electron Netw Dev Fields 13(5):441–455

    Article  Google Scholar 

  317. Teixeira FL, Chew WC (2000) Finite-difference computation of transient electromagnetic waves for cylindrical geometries in complex media. IEEE Trans Geosci Remote Sens 38(4):1530–1543. https://doi.org/10.1109/36.851953

    Article  Google Scholar 

  318. Teixeira FL, Chew WC (2001) Advances in the theory of perfectly matched layers. In: Chew W, Michielssen E, Song JM, Jin JM (eds) Fast and efficient algorithms in computational electromagnetics. Artech House Inc, Norwood

    Google Scholar 

  319. Teixeira FL, Hwang KP, Chew WC, Jin JM (2001) Conformal PML-FDTD schemes for electromagnetic field simulations: a dynamic stability study. IEEE Trans Antennas Propag 49(6):902–907. https://doi.org/10.1109/8.931147

    Article  Google Scholar 

  320. Tong MS, Kuzuoglu M, Mittra R (1999) A new anisotropic perfectly matched layer medium for mesh truncation in finite difference time domain analysis. Int J Electron 86(9):1085–1091. https://doi.org/10.1080/002072199132860

    Article  Google Scholar 

  321. Tsynkov SV (1998) Numerical solution of problems on unbounded domains. A review. Appl Numer Math 27(4):465–532 (Special Issue on Absorbing Boundary Conditions). https://doi.org/10.1016/S0168-9274(98)00025-7

    Article  MathSciNet  MATH  Google Scholar 

  322. Turkel E, Yefet A (1998) Absorbing PML boundary layers for wave-like equations. Appl Numer Math 27(4):533–557. https://doi.org/10.1016/S0168-9274(98)00026-9

    Article  MathSciNet  MATH  Google Scholar 

  323. Velu SP, Hoffmann KA (2014) Perfectly matched layer boundary condition for two-dimensional Euler equations in generalized coordinate system. Int J Comput Fluid Dyn 28(6–10):437–460. https://doi.org/10.1080/10618562.2014.973863

    Article  MathSciNet  Google Scholar 

  324. Wang H, Tao G, Shang XF, Fang XD, Burns DR (2013) Stability of finite difference numerical simulations of acoustic logging-while-drilling with different perfectly matched layer schemes. Appl Geophys 10(4):384–396. https://doi.org/10.1007/s11770-013-0400-6

    Article  Google Scholar 

  325. Wang L, Liang C (2006) A new implementation of CFS-PML for ADI-FDTD method. Microw Opt Technol Lett 48(10):1924–1928. https://doi.org/10.1002/mop.21816

    Article  Google Scholar 

  326. Wang L, Liang C, Li L (2006) Modification to convolution CFS-PML for the ADI-FDTD method. Microw Opt Technol Lett 48(2):261–265. https://doi.org/10.1002/mop.21322

    Article  Google Scholar 

  327. Wang P (1995) The limiting case of zero shear modulus in linear elasticity. J Elast 38(2):121–132. https://doi.org/10.1007/BF00042494

    Article  MathSciNet  MATH  Google Scholar 

  328. Wang S, Zhao J, Shi R (2012) An unsplit complex-frequency-shifted PML based on matched Z-transform for FDTD modelling of seismic wave equations. J Geophys Eng 9(2):218–229. https://doi.org/10.1088/1742-2132/9/2/218

    Article  Google Scholar 

  329. Wang T, Tang X (2003) Finite-difference modeling of elastic wave propagation: a nonsplitting perfectly matched layer approach. Geophysics 68(5):1749–1755. https://doi.org/10.1190/1.1620648

    Article  Google Scholar 

  330. Wei X, Shao W, Shi S, Cheng Y, Wang B (2016) An optimized higher order PML in domain decomposition WLP-FDTD method for time reversal analysis. IEEE Trans Antennas Propag 64(10):4374–4383. https://doi.org/10.1109/TAP.2016.2596899

    Article  MathSciNet  MATH  Google Scholar 

  331. Wei XK, Shao W, Ou H, Wang BZ (2016) An efficient higher-order PML in WLP-FDTD method for time reversed wave simulation. J Comput Phys 321:1206–1216. https://doi.org/10.1016/j.jcp.2016.06.032

    Article  MathSciNet  MATH  Google Scholar 

  332. Winton SC, Rappaport CM (2000) Specifying PML conductivities by considering numerical reflection dependencies. IEEE Trans Antennas Propag 48(7):1055–1063. https://doi.org/10.1109/8.876324

    Article  Google Scholar 

  333. Wolf JP, Song C (1996) Finite-element modelling of unbounded media. Wiley, Chichester

    MATH  Google Scholar 

  334. Wu C, Navarro EA, Chung PY, Litva J (1995) Modeling of waveguide structures using the nonorthogonal FDTD method with a PML absorbing boundary. Microw Opt Technol Lett 8(4):226–228. https://doi.org/10.1002/mop.4650080417

    Article  Google Scholar 

  335. Xie Z, Komatitsch D, Martin R, Matzen R (2014) Improved forward wave propagation and adjoint-based sensitivity kernel calculations using a numerically stable finite-element PML. Geophys J Int 198(3):1714–1747. https://doi.org/10.1093/gji/ggu219

    Article  Google Scholar 

  336. Xie Z, Matzen R, Cristini P, Komatitsch D, Martin R (2016) A perfectly matched layer for fluid-solid problems: application to ocean-acoustics simulations with solid ocean bottoms. J Acoust Soc Am 140(1):165–175. https://doi.org/10.1121/1.4954736

    Article  Google Scholar 

  337. Xu J, Ma JG, Chen Z (1998) Numerical validations of a nonlinear PML scheme for absorption of nonlinear electromagnetic waves. IEEE Trans Microw Theory Tech 46(11):1752–1758. https://doi.org/10.1109/22.734575

    Article  Google Scholar 

  338. Yang B, Gottlieb D, Hesthaven J (1997) Spectral simulations of electromagnetic wave scattering. J Comput Phys 134(2):216–230. https://doi.org/10.1006/jcph.1997.5686

    Article  MATH  Google Scholar 

  339. Yang B, Petropoulos PG (1998) Plane-wave analysis and comparison of split-field, biaxial, and uniaxial PML methods as ABCs for pseudospectral electromagnetic wave simulations in curvilinear coordinates. J Comput Phys 146(2):747–774. https://doi.org/10.1006/jcph.1998.6082

    Article  MathSciNet  MATH  Google Scholar 

  340. Yuan X, Borup D, Wiskin JW, Berggren M, Eidens R, Johnson SA (1997) Formulation and validation of Berenger’s PML absorbing boundary for the FDTD simulation of acoustic scattering. IEEE Trans Ultrason Ferroelectr Freq Control 44(4):816–822. https://doi.org/10.1109/58.655197

    Article  Google Scholar 

  341. Zafati E, Brun M, Djeran-Maigre I, Prunier F (2016) Design of an efficient multi-directional explicit/implicit Rayleigh absorbing layer for seismic wave propagation in unbounded domain using a strong form formulation. Int J Numer Methods Eng 106(2):83–112. https://doi.org/10.1002/nme.5002

    Article  MathSciNet  MATH  Google Scholar 

  342. Zampolli M, Nijhof MJJ, de Jong CAF, Ainslie MA, Jansen EHW, Quesson BAJ (2013) Validation of finite element computations for the quantitative prediction of underwater noise from impact pile driving. J Acoust Soc Am 133(1):72–81. https://doi.org/10.1121/1.4768886

    Article  Google Scholar 

  343. Zampolli M, Tesei A, Jensen FB, Malm N, Blottman JB (2007) A computationally efficient finite element model with perfectly matched layers applied to scattering from axially symmetric objects. J Acoust Soc Am 122(3):1472–1485. https://doi.org/10.1121/1.2764471

    Article  Google Scholar 

  344. Zeng C, Xia J, Miller RD, Tsoflias GP (2011) Application of the multiaxial perfectly matched layer (M-PML) to near-surface seismic modeling with Rayleigh waves. Geophysics 76(3):T43–T52. https://doi.org/10.1190/1.3560019

    Article  Google Scholar 

  345. Zeng YQ, He JQ, Liu QH (2001) The application of the perfectly matched layer in numerical modeling of wave propagation in poroelastic media. Geophysics 66(4):1258–1266. https://doi.org/10.1190/1.1487073

    Article  Google Scholar 

  346. Zeng YQ, Liu QH (2001) A staggered-grid finite-difference method with perfectly matched layers for poroelastic wave equations. J Acoust Soc Am 109(6):2571–2580. https://doi.org/10.1121/1.1369783

    Article  Google Scholar 

  347. Zeng YQ, Liu QH (2004) A multidomain PSTD method for 3D elastic wave equations. Bull Seismol Soc Am 94(3):1002–1015. https://doi.org/10.1785/0120030103

    Article  Google Scholar 

  348. Zeng YQ, Liu QH, Zhao G (2004) Multidomain pseudospectral time-domain (PSTD) method for acoustic waves in lossy media. J Comput Acoust 12(03):277–299. https://doi.org/10.1142/S0218396X04002286

    Article  MATH  Google Scholar 

  349. Zhang J, Gao H (2011) Irregular perfectly matched layers for 3D elastic wave modeling. Geophysics 76(2):T27–T36. https://doi.org/10.1190/1.3533999

    Article  Google Scholar 

  350. Zhang W, Shen Y (2010) Unsplit complex frequency-shifted PML implementation using auxiliary differential equations for seismic wave modeling. Geophysics 75(4):T141–T154. https://doi.org/10.1190/1.3463431

    Article  Google Scholar 

  351. Zhang YG, Ballmann J (1997) Two techniques for the absorption of elastic waves using an artificial transition layer. Wave Motion 25(1):15–33. https://doi.org/10.1016/S0165-2125(96)00030-3

    Article  MATH  Google Scholar 

  352. Zhang Z, Zhang W, Chen X (2014) Complex frequency-shifted multi-axial perfectly matched layer for elastic wave modelling on curvilinear grids. Geophys J Int 198(1):140–153. https://doi.org/10.1093/gji/ggu124

    Article  Google Scholar 

  353. Zhao AP, Juntunen J, Raisanen AV (1998) Generalized material-independent PML absorbers for the FDTD simulation of electromagnetic waves in arbitrary anisotropic dielectric and magnetic media. IEEE Microw Guid Wave Lett 8(2):52–54. https://doi.org/10.1109/75.658638

    Article  Google Scholar 

  354. Zhao JG, Shi RQ (2013) Perfectly matched layer-absorbing boundary condition for finite-element time-domain modeling of elastic wave equations. Appl Geophys 10(3):323–336. https://doi.org/10.1007/s11770-013-0388-y

    Article  Google Scholar 

  355. Zhao L (2000) The generalized theory of perfectly matched layers (GT-PML) in curvilinear co-ordinates. Int J Numer Model Electron Netw Dev Fieldsd 13(5):457–469

    Article  Google Scholar 

  356. Zhao L, Cangellaris AC (1996) A general approach for the development of unsplit-field time-domain implementations of perfectly matched layers for FDTD grid truncation. IEEE Microw Guid Wave Lett 6(5):209–211. https://doi.org/10.1109/75.491508

    Article  Google Scholar 

  357. Zhao L, Cangellaris AC (1996) GT-PML: generalized theory of perfectly matched layers and its application to the reflectionless truncation of finite-difference time-domain grids. IEEE Trans Microw Theory Tech 44(12):2555–2563. https://doi.org/10.1109/22.554601

    Article  Google Scholar 

  358. Zheng C (2007) A perfectly matched layer approach to the nonlinear Schrödinger wave equations. J Comput Phys 227(1):537–556. https://doi.org/10.1016/j.jcp.2007.08.004

    Article  MathSciNet  MATH  Google Scholar 

  359. Zheng Y, Huang X (2002) Anisotropic perfectly matched layers for elastic waves in cartesian and curvilinear coordinates. Technical report, Massachusetts Institute of Technology. Earth Resources Laboratory

  360. Zhou FX, Ma Q, Gao BB (2016) Efficient unsplit perfectly matched layers for finite-element time-domain modeling of elastodynamics. J Eng Mech 142(11):04016081. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001145

    Article  Google Scholar 

  361. Zhou Y, Wang Z (2010) Absorbing boundary conditions for the Euler and Navier-Stokes equations with the spectral difference method. J Comput Phys 229(23):8733–8749. https://doi.org/10.1016/j.jcp.2010.08.007

    Article  MathSciNet  MATH  Google Scholar 

  362. Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The finite element method: its basis and fundamentals. Butterworth-Heinemann, Oxford

    MATH  Google Scholar 

  363. Ziolkowski RW (1997) Time-derivative Lorentz material model-based absorbing boundary condition. IEEE Trans Antennas Propag 45(10):1530–1535. https://doi.org/10.1109/8.633862

    Article  Google Scholar 

  364. Zschiedrich L, Klose R, Schädle A, Schmidt F (2006) A new finite element realization of the perfectly matched layer method for Helmholtz scattering problems on polygonal domains in two dimensions. J Comput Appl Math 188(1):12–32. https://doi.org/10.1016/j.cam.2005.03.047

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge and thank Christian Soize, Professor at Université Gustave Eiffel, Laboratoire MSME, for very helpful discussions, constructive remarks and valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florent Pled.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pled, F., Desceliers, C. Review and Recent Developments on the Perfectly Matched Layer (PML) Method for the Numerical Modeling and Simulation of Elastic Wave Propagation in Unbounded Domains. Arch Computat Methods Eng 29, 471–518 (2022). https://doi.org/10.1007/s11831-021-09581-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-021-09581-y

Mathematics Subject Classification

Navigation