Skip to main content
Log in

A mixed finite element approach for viscoelastic wave propagation

  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

In this paper, we are interested in the modeling of wave propagation in viscoelastic media. We present a family of models which generalize the Zener’s model. We achieve its mathematical analysis: existence and uniqueness of solutions, energy decay and propagation with finite speed. For the numerical resolution, we extend a mixed finite element method proposed in [8]. This method combines mass lumping with a centered explicit scheme for time discretization. For the resulting scheme, we prove a discrete energy decay result and provide a sufficient stability condition. For the numerical simulation in open domains we adapt the perfectly matched layers techniques to viscoelastic waves [23]. Various numerical results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.A. Auld, Acoustic Fields and Elastic Waves in Solids, Vols. I, II (Wiley, New York, 1973).

    Google Scholar 

  2. K.D. Ayon and R.S. Robert, Predicting density using v s and gardner’s relationship, Technical Report, CREWES (1997).

  3. E. Bécache, A. Ezziani and P. Joly, Modeling of wave propagation in linear viscoelastic media, in: Mathematical Modelling of Wave Phenomena, Mathematical Modelling in Physics, Engineering and Cognitive Sciences, Vol. 7 (2002).

  4. E. Bécache, A. Ezziani and P. Joly, Mathematical and numerical modeling of wave propagation in linear viscoelastic media, in: Mathematical and Numerical Aspects of Wave Propagation (Springer, Berlin, 2003) pp. 916–921.

    Google Scholar 

  5. E. Bécache, A. Ezziani and P. Joly, Modélisation de la propagation d-ondes dans les milieux viscoéelastiques linéaires I, Analyse mathématique, Technical Report 4785, INRIA (2003).

  6. E. Bécache, A. Ezziani and P. Joly, Modélisation de la propagation d-ondes dans les milieux viscoéelastiques linéaires II, Analyse numérique, Technical Report 5159, INRIA (2004).

  7. E. Bécache, P. Joly and C. Tsogka, Fictitious domains, mixed finite elements and perfectly matched layers for 2-D elastic wave propagation, J. Comput. Acoust. 9(3) (2001) 1175–1201.

    Google Scholar 

  8. E. Bécache, P. Joly and C. Tsogka, A new family of mixed finite elements for the linear elastodynamic problem, SIAM J. Numer. Anal. 39(6) (2002) 2109–2132.

    Google Scholar 

  9. J.P. Bérenger, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys. (1994).

  10. D.R. Bland, The Theory of Linear Viscoelasticity (Pergamon, New York, 1960).

    Google Scholar 

  11. T. Bohlen, Parallel 3-D viscoelastic finite-difference seismic modelling, Comput. Geosci. 28(8) (2002) 887–899.

    Google Scholar 

  12. T. Bourbié, O. Coussy and B. Zinszner, Acoustique des Milieux Poreux (l-Institut Français du Pétrole, 1986).

  13. H. Brezis, Analyse Fonctionnelle - Théorie et Applications (Masson, Paris, 1983).

    Google Scholar 

  14. G. Canadas, Etude mathématique et numérique d’une équation hyperbolique du troisième ordre intervenant en seismique, Ph.D. thesis, Université de Pau (1979).

  15. J.M. Carcione, Seismic modeling in viscoelastic media, Geophys. 58 (1995) 110–120.

    Google Scholar 

  16. J.M. Carcione, Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic and Porous Media (Pergamon, New York, 2001).

    Google Scholar 

  17. J.M. Carcione, D. Kosloff and R. Kosloff, Wave propagation simulation in a linear viscoelastic medium, Geophys. J. Roy. Astr. Soc. 93 (1988) 393–407.

    Google Scholar 

  18. J.M. Carcione, D. Kosloff and R. Kosloff, Wave propagation simulation in a visco-elastic medium, Geophys. J. Roy. Astr. Soc. 95 (1988) 597–611.

    Google Scholar 

  19. W.C. Chew and W.H. Weedon, A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates, IEEE Microwave Opt. Technol. Lett. 7 (1994) 599–604.

    Google Scholar 

  20. T. Chichinina, G.R. Jarillo and V. Sabinin, Numerical model of seismic wave propagation in viscoelastic media, in: Mathematical and Numerical Aspects of Wave Propagation (Springer, Berlin, 2003) pp. 922–927.

    Google Scholar 

  21. R.M. Christensen, Theory of Viscoelasticity - An Introduction (Academic Press, New York, 1982).

    Google Scholar 

  22. F. Collino, P. Joly and F. Millot, Fictitious domain method for unsteady problems: Application to electromagnetic scattering, J. Comput. Phys. 138(2) (1997) 907–938.

    Google Scholar 

  23. F. Collino and P.B. Monk, Optimizing the perfectly matched layer. Exterior problems of wave propagation, Comput. Methods Appl. Mech. Engrg. (1998).

  24. F. Collino and C. Tsogka, Application of the PML absorbing layer model to the linear elastodynamic problem in anisotropic heteregeneous media, Geophys. 66 (2001) 294–307.

    Google Scholar 

  25. J. Diaz and P. Joly, Stabilized perfectly matched layer for advective acoustics, in: Mathematical and Numerical Aspects of Wave Propagation (Springer, Berlin, 2003) pp. 115–119.

    Google Scholar 

  26. G. Duvaut and J.L. Lions, Inéquations en Mécanique et en Physique (Dunod, Paris, 1972).

    Google Scholar 

  27. H. Emmerich and M. Korn, Incorporation of attenuation into time-domain computations, Geophys. 52(9) (1987) 1252–1264.

    Google Scholar 

  28. M. Fabrizio and A. Morro, Mathematical Problems in Linear Viscoelasticity (SIAM, Philadelphia, PA, 1992).

    Google Scholar 

  29. S. Fauqueux, Eléments finis mixtes spectraux et couches absorbantes parfaitement adaptées pour la propagation d’ ondes élastiques en régime transitoire, Ph.D. thesis, Université Paris 9 (2003).

  30. Y.C. Fung, Foundations of Solid Mechanics (Prentice-Hall, Englewood, Cliffs, NJ, 1965).

    Google Scholar 

  31. M.E. Gurtin and E. Sternberg, On the linear theory of viscoelasticity, Arch. Rational Mech. Anal. 11 (1962) 291–356.

    Google Scholar 

  32. T. Ha, J.E. Santos and D. Sheen, Nonconforming finite element methods for the simulation of waves in viscoelastic solids, Comput. Methods Appl. Mech. Engrg. 191 (2002) 5647–5670.

    Google Scholar 

  33. T. Hagstrom and I. Nazarov, Absorbing layers and radiation boundary conditions for jet flow simulations, in: Proc. of the 8th AIAA/CEAS Aeroacoustics Conf., Breckenridge, CO, USA (17–19 June 2002) AIAA paper, pp. 2002–2606.

  34. F.Q. Hu, A stable, perfectly matched layer for linearized Euler equations in unsplit physical variables, J. Comput. Phys. 173 (2001) 455–480.

    Google Scholar 

  35. A. Idesman, R. Niekamp and E. Stein, Finite elements in space and time for generalized viscoelastic Maxwell model, Comput. Mech. 27 (2001) 49–60.

    Google Scholar 

  36. V. Janovský, S. Shaw, M.K. Warby and J.R Whiteman, Numerical methods for treating problems of viscoelastic isotropic solid deformation, J. Comput. Appl. Math. 63 (1995) 91–107.

    Google Scholar 

  37. P. Joly, Variational methods for time-dependent wave propagation problems, in: Topics in Computational Wave Propagation Direct and Inverse Problems, Lecture Notes in Computational Science and Engineering, Vol. 31 (Springer, New York, 2003) pp. 201–264.

    Google Scholar 

  38. G.A. McMechan and T. Xu, Efficient 3-D viscoelastic modeling with application to near-surface land seismic data, Geophys. 69(2) (1998) 601–612.

    Google Scholar 

  39. J.A. Nitsche, On Korn’s second inequality, RAIRO Numer. Anal. 15(3) (1981) 237–248.

    Google Scholar 

  40. C.M. Rappaport, Perfectly matched absorbing conditions based on anisotropic lossy mapping of space, IEEE Microwave Guided Wave Lett. 3 (1995) 90–92.

    Google Scholar 

  41. J.O.A. Robertsson, J.O. Blanch and W.W. Symes, Viscoelastic finite difference modeling, Geophys. 59(9) (1994) 1444–1456.

    Google Scholar 

  42. J. Salencon, Viscoélasticité (Presse de l’École Nationale des Ponts et Chaussées, Paris, 1983).

    Google Scholar 

  43. S. Shaw, M.K. Warby, J.R Whiteman, C. Dawson and M.F Wheeler, Numerical techniques for the treatment of quasistatic viscoelastic stress problems in linear isotropic solids, Comput. Methods Appl. Mech. Engrg. 118 (1994) 211–237.

    Google Scholar 

  44. T.A. Spencer, J.R. Sonnad and T.M. Butler, Seismic Q stratigraphy or dissipation, Geophys. 47 (1982) 16–24.

    Google Scholar 

  45. C. Tsogka, Modélisation mathématique et numérique de la propagation des ondes élastiques tridimensionnelles dans les milieux fissurés, Ph.D. thesis, Université Paris 9 (1999).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bécache, E., Ezziani, A. & Joly, P. A mixed finite element approach for viscoelastic wave propagation. Comput Geosci 8, 255–299 (2005). https://doi.org/10.1007/s10596-005-3772-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-005-3772-8

Keywords

Navigation