Skip to main content
Log in

A Review on the Size-Dependent Models of Micro-beam and Micro-plate Based on the Modified Couple Stress Theory

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Micro scale experiments demonstrated that the material deformation behaviors of some metals and polymers deformed elasticity are size dependence, and the modified couple stress theory (MCST), which introduce an additional material length scale parameter, could capture the size dependences. The article reviews the available size-dependent models of micro-beam and micro-plate based on the MCST. For the representative micro-beams and micro-plates, the relevant mechanical models of micro-structures for static bending, vibration, buckling and pull-in instability, have been established based on the MCST, and the analytical and numerical solutions have been obtained. The results show that the size effects on the mechanical properties of the micro-structures are obvious and significant. Further possible researches on the size-dependent behaviors of the micro-structures are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig.28

Similar content being viewed by others

References

  1. Cornell BA, Braach-Maksvytis VLB, King LG, Osman PDJ, Raguse B, Wieczorek L, Pace RJ (1997) A biosensor that uses ion-channel switches. Nature 387(5):580–583

    Article  Google Scholar 

  2. Lin VS, Motesharei K, Dancil KP, Sailor MJ, Ghadiri MR (1997) A porous silicon-based optical interferometric biosensor. Science 278(5339):840–843

    Article  Google Scholar 

  3. Srikar VT, Senturia SD (2002) The reliability of microelectromechanical systems (MEMS) in shock environments. J Microelectromech Syst 11(3):206–214

    Article  Google Scholar 

  4. Vollmer F, Braun D, Libchaber A, Khoshsima M, Teraoka I, Arnold S (2002) Protein detection by optical shift of a resonant microcavity. Appl Phys Lett 80(21):4057–4059. https://doi.org/10.1063/1.1482797

    Article  Google Scholar 

  5. Chen F, Brotz J, Arslan U, Lo CC, Mukherjee T, Fedder GK (2005) CMOS-MEMS resonant RF mixer-filters. In: 18th IEEE international conference on micro electro mechanical systems, 2005. MEMS 2005

  6. Fargas-Marques A, Casals-Terre J, Shkel AM (2007) Resonant pull-in condition in parallel-plate electrostatic actuators. J Microelectromech Syst 16(5):1044–1053. https://doi.org/10.1109/jmems.2007.900893

    Article  Google Scholar 

  7. Li X, Bhushan B (2002) A review of nanoindentation continuous stiffness measurement technique and its applications. Mater Charact 48:11–36

    Article  Google Scholar 

  8. Haque MA, Saif MTA (2003) a review of mems-based microscale and nanoscale tensile and bending testing. Exp Mech 43(3):248–255

    Article  Google Scholar 

  9. Chuang W-C, Lee H-L, Chang P-Z, Hu Y-C (2010) Review on the modeling of electrostatic MEMS. Sensors 10(6):6149–6171. https://doi.org/10.3390/s100606149

    Article  Google Scholar 

  10. Shoaib M, Hamid NH, Malik AF, Zain Ali NB, Tariq Jan M (2016) A review on key issues and challenges in devices level MEMS testing. J Sens 2016:1–14. https://doi.org/10.1155/2016/1639805

    Article  Google Scholar 

  11. Zhang Y, Zhao YP (2016) Measuring the nonlocal effects of a micro/nanobeam by the shifts of resonant frequencies. Int J Solids Struct 102:259–266. https://doi.org/10.1016/j.ijsolstr.2016.09.034

    Article  Google Scholar 

  12. Srikar VT, Spearing SM (2003) a critical review of microscale mechanical testing methods used in the design of miroelectromechanical systems. Exp Mech 43(3):238–247

    Article  Google Scholar 

  13. Stelmashenko NA, Walls MG, Brown LM, Milman YuV (1993) Microindentations on W and Mo oriented single crystals: An STM study. Acta Metall Mater 41(10):2855–2865

    Article  Google Scholar 

  14. Fleck NA, Muller GM, Ashby MF, Hutchinson JW (1994) Strain gradient plasticity: theory and experiment. Acta Metall Mater 42(2):475–487

    Article  Google Scholar 

  15. Ma Q, Clarke DR (1995) Size dependent hardness of silver single crystals. J Mater Res 10(4):853–863

    Article  Google Scholar 

  16. Poole WJ, Ashby MF, Fleck NA (1996) Micro-hardness of annealed and work-hardened copper polycrystals. Scripta Mater 34(4):559–564

    Article  Google Scholar 

  17. Stölken JS, Evans AG (1998) A microbend test method for measuring the plasticity length scale. Acta Mater 46(14):5109–5115

    Article  Google Scholar 

  18. Chong ACM, Lam DCC (1999) Strain gradient plasticity effect in indentation hardness of polymers. J Mater Res 14(10):4103–4110

    Article  Google Scholar 

  19. Gao H, Huang Y, Nix WD, Hutchinson JW (1999) Mechanism-based strain gradient plasticity–theory. J Mech Phys Solids 47:1239–1263

    Article  MathSciNet  Google Scholar 

  20. Chen SH, Wang TC (2000) A new hardening law for strain gradient plasticity. Acta Mater Compos Sin 48:3997–4005

    Article  Google Scholar 

  21. Huang Y, Gao H, Nix WD, Hutchinson JW (2000) Mechanism-based strain gradient plasticity–analysis. J Mech Phys Solids 48:99–128

    Article  MathSciNet  Google Scholar 

  22. Fleck NA, Hutchinson JW (2001) A reformulation of strain gradient plasticity. J Mech Phys Solids 49:2245–2271

    Article  Google Scholar 

  23. Chen SH, Wang TC (2002) A new deformation theory with strain gradient effects. Int J Plast 18:971–995

    Article  Google Scholar 

  24. Niordson CF, Hutchinson JW (2003) On lower order strain gradient plasticity theories. Eur J Mech A Solids 22(6):771–778. https://doi.org/10.1016/s0997-7538(03)00069-x

    Article  MATH  Google Scholar 

  25. Wang W, Huang Y, Hsia KJ, Hu KX, Chandra A (2003) A study of microbend test by strain gradient plasticity. Int J Plast 19:365–382

    Article  Google Scholar 

  26. Gudmundson P (2004) A unified treatment of strain gradient plasticity. J Mech Phys Solids 52(6):1379–1406. https://doi.org/10.1016/j.jmps.2003.11.002

    Article  MathSciNet  MATH  Google Scholar 

  27. Lou J, Shrotriya P, Allameh S, Buchheit T, Soboyejo WO (2006) Strain gradient plasticity length scale parameters for LIGA Ni MEMs thin films. Mater Sci Eng, A 441(1–2):299–307. https://doi.org/10.1016/j.msea.2006.08.048

    Article  Google Scholar 

  28. Liebold C, Müller WH (2016) Comparison of gradient elasticity models for the bending of micromaterials. Comput Mater Sci 116:52–61. https://doi.org/10.1016/j.commatsci.2015.10.031

    Article  Google Scholar 

  29. Li Z, He Y, Lei J, Han S, Guo S, Liu D (2018) Experimental investigation on size-dependent higher-mode vibration of cantilever microbeams. Microsyst Technol. https://doi.org/10.1007/s00542-018-4244-0

    Article  Google Scholar 

  30. Lam DCC, Yang F, Chong ACM, Wang J, Tong P (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51(8):1477–1508. https://doi.org/10.1016/s0022-5096(03)00053-x

    Article  MATH  Google Scholar 

  31. McFarland AW, Colton JS (2005) Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J Micromech Microeng 15(5):1060–1067. https://doi.org/10.1088/0960-1317/15/5/024

    Article  Google Scholar 

  32. Lei J, He Y, Guo S, Li Z, Liu D (2016) Size-dependent vibration of nickel cantilever microbeams: experiment and gradient elasticity. AIP Adv 6(10):51–59. https://doi.org/10.1063/1.4964660]

    Article  Google Scholar 

  33. Li Z, He Y, Lei J, Guo S, Liu D, Wang L (2018) A standard experimental method for determining the material length scale based on modified couple stress theory. Int J Mech Sci 141:198–205. https://doi.org/10.1016/j.ijmecsci.2018.03.035

    Article  Google Scholar 

  34. Zhao Y (2016) Modern continuum mechanics. Science Press, Beijing

    Google Scholar 

  35. Kehchih H, Xinming Q, Hanqing J (1999) Recent advances in strain gradient plasticity–couple stress theory and SG theory. J Mech Strength 21(2):81–87

    Google Scholar 

  36. Kehchih H, Xinming Q, Hanqing J (1999) Recent advances in strain gradient plasticity–mechanism-based strain gradient (MSG) plasticity. J Mech Strength 21(3):161–165

    Google Scholar 

  37. Mindlin RD, Tiersten HF (1962) Effects of couple-stresses in linear elasticity. Arch Ration Mech Anal 11(1):415–448

    Article  MathSciNet  Google Scholar 

  38. Toupin RA (1962) Elastic materials with couple-stresses. Arch Ration Mech Anal 11(1):385–414

    Article  MathSciNet  Google Scholar 

  39. Mindlin RD (1964) Micro-structure in linear elasticity. Arch Ration Mech Anal 16(1):51–78

    Article  MathSciNet  Google Scholar 

  40. Eringen AC (1972) Linear-theory-of-nonlocal-elasticity-and-dispersion-of-plane-waves. Int J Eng Sci 10:425–435

    Article  Google Scholar 

  41. Eringen AC (1992) Vistas of nonlocal continuum physics. Int J Eng Sci 30(10):1551–1565

    Article  MathSciNet  Google Scholar 

  42. Lim CW, Zhang G, Reddy JN (2015) A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J Mech Phys Solids 78:298–313. https://doi.org/10.1016/j.jmps.2015.02.001

    Article  MathSciNet  MATH  Google Scholar 

  43. Ma LH, Ke LL, Reddy JN, Yang J, Kitipornchai S, Wang YS (2018) Wave propagation characteristics in magneto-electro-elastic nanoshells using nonlocal strain gradient theory. Compos Struct 199:10–23. https://doi.org/10.1016/j.compstruct.2018.05.061

    Article  Google Scholar 

  44. Yang F, Chong ACM, Lam DCC, Tong P (2002) couple stress based strain gradient theory for elasticity. Int J Solids Struct 39:2731–2743

    Article  Google Scholar 

  45. Park SK, Gao XL (2006) Bernoulli–Euler beam model based on a modified couple stress theory. J Micromech Microeng 16(11):2355–2359. https://doi.org/10.1088/0960-1317/16/11/015

    Article  Google Scholar 

  46. Akgoz B, Civalek O (2012) Analysis of micro-sized beams for various boundary conditions based on the strain gradient elasticity theory. Arch Appl Mech 82(3):423–443. https://doi.org/10.1007/s00419-011-0565-5

    Article  MATH  Google Scholar 

  47. Kandaz M, Dal H (2018) A comparative study of modified strain gradient theory and modified couple stress theory for gold microbeams. Arch Appl Mech 88(11):2051–2070. https://doi.org/10.1007/s00419-018-1436-0

    Article  Google Scholar 

  48. Xia W, Wang L, Yin L (2010) Nonlinear non-classical microscale beams: static bending, postbuckling and free vibration. Int J Eng Sci 48(12):2044–2053. https://doi.org/10.1016/j.ijengsci.2010.04.010

    Article  MathSciNet  MATH  Google Scholar 

  49. Wang YG, Lin WH, Liu N (2015) Nonlinear bending and post-buckling of extensible microscale beams based on modified couple stress theory. Appl Math Model 39(1):117–127. https://doi.org/10.1016/j.apm.2014.05.007

    Article  MathSciNet  MATH  Google Scholar 

  50. Chang WJ, Yang YC, Lee HL (2013) Dynamic behaviour of atomic force microscope-based nanomachining based on a modified couple stress theory. Micro Nano Lett 8(11):832–835. https://doi.org/10.1049/mnl.2013.0493

    Article  Google Scholar 

  51. Chang WJ, Yang YC, Lee HL (2015) Nanomachining analysis of a multi-cracked atomic force microscope cantilever based on a modified couple stress theory. Mod Phys Lett B. https://doi.org/10.1142/S0217984915501869

    Article  MathSciNet  Google Scholar 

  52. Sherafatnia K, Kahrobaiyan MH, Farrahi GH (2014) Size-dependent energy release rate formulation of notched beams based on a modified couple stress theory. Eng Fract Mech 116:80–91. https://doi.org/10.1016/j.engfracmech.2013.12.001

    Article  Google Scholar 

  53. Şimşek M (2014) Nonlinear static and free vibration analysis of microbeams based on the nonlinear elastic foundation using modified couple stress theory and He’s variational method. Compos Struct 112(1):264–272. https://doi.org/10.1016/j.compstruct.2014.02.010

    Article  Google Scholar 

  54. Mojahedi M, Rahaeifard M (2016) A size-dependent model for coupled 3D deformations of nonlinear microbridges. Int J Eng Sci 100:171–182. https://doi.org/10.1016/j.ijengsci.2015.12.010

    Article  MathSciNet  MATH  Google Scholar 

  55. Simsek M (2010) Dynamic analysis of an embedded microbeam carrying a moving microparticle based on the modified couple stress theory. Int J Eng Sci 48(12):1721–1732. https://doi.org/10.1016/j.ijengsci.2010.09.027

    Article  MATH  Google Scholar 

  56. Gao XL, Mahmoud FF (2013) A new Bernoulli-Euler beam model incorporating microstructure and surface energy effects. Z Angew Math Phys 65(2):393–404. https://doi.org/10.1007/s00033-013-0343-z

    Article  MathSciNet  MATH  Google Scholar 

  57. Awrejcewicz J, Krysko VA, Zhigalov MV, Krysko AV (2017) Mathematical model of a three-layer micro- and nano-beams based on the hypotheses of the Grigolyuk–Chulkov and the modified couple stress theory. Int J Solids Struct 117:39–50. https://doi.org/10.1016/j.ijsolstr.2017.04.011

    Article  Google Scholar 

  58. Tan ZQ, Chen YC (2019) Size-dependent electro-thermo-mechanical analysis of multilayer cantilever microactuators by Joule heating using the modified couple stress theory. Compos B Eng 161:183–189. https://doi.org/10.1016/j.compositesb.2018.10.067

    Article  Google Scholar 

  59. Mohandes M, Ghasemi AR (2017) Modified couple stress theory and finite strain assumption for nonlinear free vibration and bending of micro/nanolaminated composite Euler–Bernoulli beam under thermal loading. Proc Inst Mech Eng Part C J Mech Eng Sci 231(21):4044–4056. https://doi.org/10.1177/0954406216656884

    Article  Google Scholar 

  60. Zheng S, Li Z, Chen M, Wang H (2016) Size-dependent static bending and free vibration of 0–3 polarized PLZT microcantilevers. Smart Mater Struct. https://doi.org/10.1088/0964-1726/25/8/085025

    Article  Google Scholar 

  61. Miyamoto Y, Kaysser WA, Rabin BH, Kawasaki A, Ford RG (2013) Functionally graded materials: design, processing and applications. Springer, NewYork

    Google Scholar 

  62. Ghayesh MH, Farajpour A (2019) A review on the mechanics of functionally graded nanoscale and microscale structures. Int J Eng Sci 137:8–36. https://doi.org/10.1016/j.ijengsci.2018.12.001

    Article  MathSciNet  MATH  Google Scholar 

  63. Asghari M, Ahmadian MT, Kahrobaiyan MH, Rahaeifard M (2010) On the size-dependent behavior of functionally graded micro-beams. Mater Des 31(5):2324–2329. https://doi.org/10.1016/j.matdes.2009.12.006

    Article  Google Scholar 

  64. Reddy JN (2011) Microstructure-dependent couple stress theories of functionally graded beams. J Mech Phys Solids 59(11):2382–2399. https://doi.org/10.1016/j.jmps.2011.06.008

    Article  MathSciNet  MATH  Google Scholar 

  65. Simsek M, Reddy JN (2013) Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory. Int J Eng Sci 64:37–53. https://doi.org/10.1016/j.ijengsci.2012.12.002

    Article  MathSciNet  MATH  Google Scholar 

  66. Kong SL, Zhou SJ, Nie ZF, Wang K (2008) The size-dependent natural frequency of Bernoulli–Euler micro-beams. Int J Eng Sci 46(5):427–437. https://doi.org/10.1016/j.ijengsci.2007.10.002

    Article  MATH  Google Scholar 

  67. Kahrobaiyan MH, Asghari M, Rahaeifard M, Ahmadian MT (2010) Investigation of the size-dependent dynamic characteristics of atomic force microscope microcantilevers based on the modified couple stress theory. Int J Eng Sci 48(12):1985–1994. https://doi.org/10.1016/j.ijengsci.2010.06.003

    Article  Google Scholar 

  68. Ghayesh MH, Farokhi H, Amabili M (2013) Coupled nonlinear size-dependent behaviour of microbeams. Appl Phys A Mater Sci Process 112(2):329–338. https://doi.org/10.1007/s00339-013-7787-z

    Article  MATH  Google Scholar 

  69. Ghayesh MH, Farokhi H, Amabili M (2013) Nonlinear dynamics of a microscale beam based on the modified couple stress theory. Compos B Eng 50:318–324. https://doi.org/10.1016/j.compositesb.2013.02.021

    Article  MATH  Google Scholar 

  70. Wang L, Xu YY, Ni Q (2013) Size-dependent vibration analysis of three-dimensional cylindrical microbeams based on modified couple stress theory: a unified treatment. Int J Eng Sci 68:1–10. https://doi.org/10.1016/j.ijengsci.2013.03.004

    Article  MathSciNet  MATH  Google Scholar 

  71. Tang M, Ni Q, Wang L, Luo Y, Wang Y (2014) Nonlinear modeling and size-dependent vibration analysis of curved microtubes conveying fluid based on modified couple stress theory. Int J Eng Sci 84:1–10. https://doi.org/10.1016/j.ijengsci.2014.06.007

    Article  MathSciNet  MATH  Google Scholar 

  72. Yang TZ, Ji S, Yang XD, Fang B (2014) Microfluid-induced nonlinear free vibration of microtubes. Int J Eng Sci 76:47–55. https://doi.org/10.1016/j.ijengsci.2013.11.014

    Article  Google Scholar 

  73. Ghorbanpour Arani A, Abdollahian M, Jalaei MH (2015) Vibration of bioliquid-filled microtubules embedded in cytoplasm including surface effects using modified couple stress theory. J Theor Biol 367:29–38. https://doi.org/10.1016/j.jtbi.2014.11.019

    Article  MathSciNet  MATH  Google Scholar 

  74. Hashemi M, Asghari M (2015) Investigation of the small-scale effects on the three-dimensional flexural vibration characteristics of a basic model for micro-engines. Acta Mech 226(9):3085–3096. https://doi.org/10.1007/s00707-015-1348-9

    Article  MathSciNet  MATH  Google Scholar 

  75. Dehrouyeh-Semnani AM, Zafari-Koloukhi H, Dehdashti E, Nikkhah-Bahrami M (2016) A parametric study on nonlinear flow-induced dynamics of a fluid-conveying cantilevered pipe in post-flutter region from macro to micro scale. Int J Non-Linear Mech 85:207–225. https://doi.org/10.1016/j.ijnonlinmec.2016.07.008

    Article  Google Scholar 

  76. Korayem MH, Homayooni A (2016) Non-classic multi scale analysis of 2D-manipulation with AFM based on modified couple stress theory. Comput Mater Sci 114:33–39. https://doi.org/10.1016/j.commatsci.2015.12.002

    Article  Google Scholar 

  77. Togun N, Baǧdatli SM (2016) Size dependent nonlinear vibration of the tensioned nanobeam based on the modified couple stress theory. Compos B Eng 97:255–262. https://doi.org/10.1016/j.compositesb.2016.04.074

    Article  Google Scholar 

  78. Wang L (2010) Size-dependent vibration characteristics of fluid-conveying microtubes. J Fluids Struct 26(4):675–684. https://doi.org/10.1016/j.jfluidstructs.2010.02.005

    Article  Google Scholar 

  79. Kahrobaiyan MH, Asghari M, Hoore M, Ahmadian MT (2012) Nonlinear size-dependent forced vibrational behavior of microbeams based on a non-classical continuum theory. J Vib Control 18(5):696–711. https://doi.org/10.1177/1077546311414600

    Article  MathSciNet  MATH  Google Scholar 

  80. Farokhi H, Ghayesh MH, Amabili M (2013) Nonlinear dynamics of a geometrically imperfect microbeam based on the modified couple stress theory. Int J Eng Sci 68:11–23. https://doi.org/10.1016/j.ijengsci.2013.03.001

    Article  MathSciNet  MATH  Google Scholar 

  81. Farokhi H, Ghayesh MH (2016) Size-dependent parametric dynamics of imperfect microbeams. Int J Eng Sci 99:39–55. https://doi.org/10.1016/j.ijengsci.2015.10.014

    Article  MathSciNet  MATH  Google Scholar 

  82. Wang YG, Lin WH, Liu N (2013) Nonlinear free vibration of a microscale beam based on modified couple stress theory. Physica E 47:80–85. https://doi.org/10.1016/j.physe.2012.10.020

    Article  Google Scholar 

  83. Dai HL, Wang YK, Wang L (2015) Nonlinear dynamics of cantilevered microbeams based on modified couple stress theory. Int J Eng Sci 94:103–112. https://doi.org/10.1016/j.ijengsci.2015.05.007

    Article  MathSciNet  MATH  Google Scholar 

  84. Farokhi H, Païdoussis MP, Misra AK (2016) A new nonlinear model for analyzing the behaviour of carbon nanotube-based resonators. J Sound Vib 378:56–75. https://doi.org/10.1016/j.jsv.2016.05.008

    Article  Google Scholar 

  85. Ghayesh MH, Amabili M (2014) Coupled longitudinal-transverse behaviour of a geometrically imperfect microbeam. Compos B Eng 60:371–377. https://doi.org/10.1016/j.compositesb.2013.12.030

    Article  Google Scholar 

  86. Tang M, Ni Q, Wang L, Luo Y, Wang Y (2014) Size-dependent vibration analysis of a microbeam in flow based on modified couple stress theory. Int J Eng Sci 85:20–30. https://doi.org/10.1016/j.ijengsci.2014.07.006

    Article  Google Scholar 

  87. Ansari R, Ashrafi MA, Arjangpay A (2015) An exact solution for vibrations of postbuckled microscale beams based on the modified couple stress theory. Appl Math Model 39(10–11):3050–3062. https://doi.org/10.1016/j.apm.2014.11.029

    Article  MathSciNet  MATH  Google Scholar 

  88. Ghayesh MH, Farokhi H, Alici G (2015) Subcritical parametric dynamics of microbeams. Int J Eng Sci 95:36–48. https://doi.org/10.1016/j.ijengsci.2015.06.001

    Article  MathSciNet  MATH  Google Scholar 

  89. Wang YG, Lin WH, Zhou CL, Liu RX (2015) Thermal postbuckling and free vibration of extensible microscale beams based on modified couple stress theory. J Mech 31(1):37–46. https://doi.org/10.1017/jmech.2014.47

    Article  Google Scholar 

  90. Song YQ, Cretin B, Todorovic DM, Vairac P (2019) Investigation of the photothermal excited microcantilevers based on modified couple stress theory. Int J Thermophys. https://doi.org/10.1007/s10765-019-2514-4

    Article  Google Scholar 

  91. Dehrouyeh-Semnani AM, BehboodiJouybari M, Dehrouyeh M (2016) On size-dependent lead-lag vibration of rotating microcantilevers. Int J Eng Sci 101:50–63. https://doi.org/10.1016/j.ijengsci.2015.12.009

    Article  MathSciNet  MATH  Google Scholar 

  92. Hu K, Wang YK, Dai HL, Wang L, Qian Q (2016) Nonlinear and chaotic vibrations of cantilevered micropipes conveying fluid based on modified couple stress theory. Int J Eng Sci 105:93–107. https://doi.org/10.1016/j.ijengsci.2016.04.014

    Article  MathSciNet  Google Scholar 

  93. Lee HL, Chang WJ (2016) Sensitivity analysis of rectangular atomic force microscope cantilevers immersed in liquids based on the modified couple stress theory. Micron 80:1–5. https://doi.org/10.1016/j.micron.2015.09.006

    Article  Google Scholar 

  94. Sourki R, Hoseini SAH (2016) Free vibration analysis of size-dependent cracked microbeam based on the modified couple stress theory. Appl Phys A Mater Sci Process. https://doi.org/10.1007/s00339-016-9961-6

    Article  Google Scholar 

  95. Ghadiri M, Zajkani A, Akbarizadeh MR (2016) Thermal effect on dynamics of thin and thick composite laminated microbeams by modified couple stress theory for different boundary conditions. Appl Phys A Mater Sci Process. https://doi.org/10.1007/s00339-016-0534-5

    Article  Google Scholar 

  96. Bakhshi Khaniki H, Hosseini-Hashemi S (2017) The size-dependent analysis of multilayered microbridge systems under a moving load/mass based on the modified couple stress theory. Eur Phys J Plus. https://doi.org/10.1140/epjp/i2017-11466-0

    Article  MATH  Google Scholar 

  97. Shafiei N, Kazemi M, Ghadiri M (2016) Nonlinear vibration of axially functionally graded tapered microbeams. Int J Eng Sci 102:12–26. https://doi.org/10.1016/j.ijengsci.2016.02.007

    Article  MathSciNet  MATH  Google Scholar 

  98. Akgoz B, Civalek O (2013) Free vibration analysis of axially functionally graded tapered Bernoulli–Euler microbeams based on the modified couple stress theory. Compos Struct 98:314–322. https://doi.org/10.1016/j.compstruct.2012.11.020

    Article  Google Scholar 

  99. Jia XL, Ke LL, Feng CB, Yang J, Kitipornchai S (2015) Size effect on the free vibration of geometrically nonlinear functionally graded micro-beams under electrical actuation and temperature change. Compos Struct 133:1137–1148. https://doi.org/10.1016/j.compstruct.2015.08.044

    Article  Google Scholar 

  100. Shafiei N, Kazemi M, Ghadiri M (2016) On size-dependent vibration of rotary axially functionally graded microbeam. Int J Eng Sci 101:29–44. https://doi.org/10.1016/j.ijengsci.2015.12.008

    Article  MATH  Google Scholar 

  101. Dehrouyeh-Semnani AM, Mostafaei H, Nikkhah-Bahrami M (2016) Free flexural vibration of geometrically imperfect functionally graded microbeams. Int J Eng Sci 105:56–79. https://doi.org/10.1016/j.ijengsci.2016.05.002

    Article  MathSciNet  MATH  Google Scholar 

  102. Fang JS, Gu JP, Wang HW (2018) Size-dependent three-dimensional free vibration of rotating functionally graded microbeams based on a modified couple stress theory. Int J Mech Sci 136:188–199. https://doi.org/10.1016/j.ijmecsci.2017.12.028

    Article  Google Scholar 

  103. Mohammadi M, Eghtesad M, Mohammadi H (2018) Stochastic analysis of dynamic characteristics and pull-in instability of FGM micro-switches with uncertain parameters in thermal environments. Int J Mech Mater Des 14(3):417–442. https://doi.org/10.1007/s10999-017-9383-4

    Article  Google Scholar 

  104. Jalali MH, Zargar O, Baghani M (2019) Size-dependent vibration analysis of FG microbeams in thermal environment based on modified couple stress theory. Iran J Sci Technol Trans Mech Eng 43:761–771. https://doi.org/10.1007/s40997-018-0193-6

    Article  Google Scholar 

  105. Kong S, Zhou S, Nie Z, Wang K (2009) Size effect on the buckling loads of slender columns based on a modified couple stress theory. J Mech Strength 31(1):136–139

    Google Scholar 

  106. Akgoz B, Civalek O (2011) Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro-scaled beams. Int J Eng Sci 49(11):1268–1280. https://doi.org/10.1016/j.ijengsci.2010.12.009

    Article  MathSciNet  MATH  Google Scholar 

  107. Mohammad-Abadi M, Daneshmehr AR (2014) Size dependent buckling analysis of microbeams based on modified couple stress theory with high order theories and general boundary conditions. Int J Eng Sci 74:1–14. https://doi.org/10.1016/j.ijengsci.2013.08.010

    Article  MathSciNet  MATH  Google Scholar 

  108. Dashtaki PM, Beni YT (2014) Effects of Casimir force and thermal stresses on the buckling of electrostatic nanobridges based on couple stress theory. Arab J Sci Eng 39(7):5753–5763. https://doi.org/10.1007/s13369-014-1107-6

    Article  Google Scholar 

  109. Ghayesh MH, Farokhi H (2016) Parametric instability of microbeams in supercritical regime. Nonlinear Dyn 83(3):1171–1183. https://doi.org/10.1007/s11071-015-2395-4

    Article  MathSciNet  Google Scholar 

  110. Kiani K (2017) Large deformation of uniaxially loaded slender microbeams on the basis of modified couple stress theory: analytical solution and Galerkin-based method. Physica E 93:301–312. https://doi.org/10.1016/j.physe.2017.06.030

    Article  Google Scholar 

  111. Akbarzadeh Khorshidi M, Shariati M (2017) Buckling and postbuckling of size-dependent cracked microbeams based on a modified couple stress theory. J Appl Mech Tech Phys 58(4):717–724. https://doi.org/10.1134/S0021894417040174

    Article  MathSciNet  MATH  Google Scholar 

  112. Li X, Luo Y (2017) Size-dependent postbuckling of piezoelectric microbeams based on a modified couple stress theory. Int J Appl Mech. https://doi.org/10.1142/S1758825117500533

    Article  Google Scholar 

  113. Alibeigi B, Tadi Beni Y, Mehralian F (2018) On the thermal buckling of magneto-electro-elastic piezoelectric nanobeams. Eur Phys J Plus. https://doi.org/10.1140/epjp/i2018-11954-7

    Article  Google Scholar 

  114. Chen X, Li Y (2018) Size-dependent post-buckling behaviors of geometrically imperfect microbeams. Mech Res Commun 88:25–33. https://doi.org/10.1016/j.mechrescom.2017.12.005

    Article  Google Scholar 

  115. Hong Y, Wang L, Dai HL (2018) Stability and nonplanar postbuckling behavior of current-carrying microwires in a longitudinal magnetic field. J Mech Mater Struct 13(4):481–503. https://doi.org/10.2140/jomms.2018.13.481

    Article  MathSciNet  Google Scholar 

  116. Attia MA, Emam SA (2018) Electrostatic nonlinear bending, buckling and free vibrations of viscoelastic microbeams based on the modified couple stress theory. Acta Mech 229(8):3235–3255. https://doi.org/10.1007/s00707-018-2162-y

    Article  MathSciNet  MATH  Google Scholar 

  117. Nateghi A, Salamat-talab M, Rezapour J, Daneshian B (2012) Size dependent buckling analysis of functionally graded micro beams based on modified couple stress theory. Appl Math Model 36(10):4971–4987. https://doi.org/10.1016/j.apm.2011.12.035

    Article  MathSciNet  MATH  Google Scholar 

  118. Shojaeian M, Beni YT (2015) Size-dependent electromechanical buckling of functionally graded electrostatic nano-bridges. Sens Actuat Phys 232:49–62. https://doi.org/10.1016/j.sna.2015.04.025

    Article  Google Scholar 

  119. Jia XL, Ke LL, Zhong XL, Sun Y, Yang J, Kitipornchai S (2018) Thermal-mechanical-electrical buckling behavior of functionally graded micro-beams based on modified couple stress theory. Compos Struct 202:625–634. https://doi.org/10.1016/j.compstruct.2018.03.025

    Article  Google Scholar 

  120. Chuang WC, Lee HL, Chang PZ, Hu YC (2010) Review on the modeling of electrostatic MEMS. Sensors (Basel) 10(6):6149–6171. https://doi.org/10.3390/s100606149

    Article  Google Scholar 

  121. Batra RC, Porfiri M, Spinello D (2007) Review of modeling electrostatically actuated microelectromechanical systems. Smart Mater Struct 16(6):R23–R31. https://doi.org/10.1088/0964-1726/16/6/r01

    Article  Google Scholar 

  122. Zhang W-M, Yan H, Peng Z-K, Meng G (2014) Electrostatic pull-in instability in MEMS/NEMS: A review. Sens Actuat A 214:187–218. https://doi.org/10.1016/j.sna.2014.04.025

    Article  Google Scholar 

  123. Rahaeifard M, Kahrobaiyan MH, Asghari M, Ahmadian MT (2011) Static pull-in analysis of microcantilevers based on the modified couple stress theory. Sens Actuat A 171(2):370–374. https://doi.org/10.1016/j.sna.2011.08.025

    Article  MATH  Google Scholar 

  124. Rahaeifard M, Kahrobaiyan MH, Ahmadian MT, Firoozbakhsh K (2012) Size-dependent pull-in phenomena in nonlinear microbridges. Int J Mech Sci 54(1):306–310. https://doi.org/10.1016/j.ijmecsci.2011.11.011

    Article  Google Scholar 

  125. Kong S (2013) Size effect on pull-in behavior of electrostatically actuated microbeams based on a modified couple stress theory. Appl Math Model 37(12–13):7481–7488. https://doi.org/10.1016/j.apm.2013.02.024

    Article  MathSciNet  MATH  Google Scholar 

  126. Dai HL, Wang L (2017) Size-dependent pull-in voltage and nonlinear dynamics of electrically actuated microcantilever-based MEMS: A full nonlinear analysis. Commun Nonlinear Sci Numer Simul 46:116–125. https://doi.org/10.1016/j.cnsns.2016.11.004

    Article  MathSciNet  MATH  Google Scholar 

  127. Rezaei Kivi A, Azizi S, Norouzi P (2017) Bifurcation analysis of an electrostatically actuated nano-beam based on modified couple stress theory. Sens Imaging. https://doi.org/10.1007/s11220-017-0179-2

    Article  Google Scholar 

  128. Ghayesh MH, Farokhi H, Alici G (2016) Size-dependent performance of microgyroscopes. Int J Eng Sci 100:99–111. https://doi.org/10.1016/j.ijengsci.2015.11.003

    Article  MathSciNet  MATH  Google Scholar 

  129. Farrokhabadi A, Koochi A, Kazemi A, Abadyan MP (2014) Effects of size-dependent elasticity on stability of nanotweezers. Appl Math Mech (Engl Ed) 35(12):1573–1590. https://doi.org/10.1007/s10483-014-1880-6

    Article  MathSciNet  MATH  Google Scholar 

  130. Mobki H, Sadeghi MH, Rezazadeh G, Fathalilou M, Keyvani-janbahan AA (2014) Nonlinear behavior of a nano-scale beam considering length scale-parameter. Appl Math Model 38(5–6):1881–1895. https://doi.org/10.1016/j.apm.2013.10.001

    Article  MathSciNet  MATH  Google Scholar 

  131. Farokhi H, Ghayesh MH (2016) Size-dependent behaviour of electrically actuated microcantilever-based MEMS. Int J Mech Mater Des 12(3):301–315. https://doi.org/10.1007/s10999-015-9295-0

    Article  Google Scholar 

  132. Sedighi HM, Moory-Shirbani M, Shishesaz M, Koochi A, Abadyan M (2016) Size-dependent dynamic behavior and instability analysis of nano-scale rotational varactor in the presence of Casimir attraction. Int J Appl Mech. https://doi.org/10.1142/S1758825116500186

    Article  Google Scholar 

  133. Farokhi H, Ghayesh MH (2017) Electrically actuated MEMS resonators: effects of fringing field and viscoelasticity. Mech Syst Signal Process 95:345–362. https://doi.org/10.1016/j.ymssp.2017.03.018

    Article  Google Scholar 

  134. Lu F, Kong S, Yuan Y (2018) Size effect on the static pull-in instability of the elec trostatically actuated cantilever micro-beams. J Mech Strength 40(6):1336–1340. https://doi.org/10.16579/j.issn.1001.9669.2018.06.011

    Article  Google Scholar 

  135. Rahimi Z, Rezazadeh G, Sadeghian H (2018) Study on the size dependent effective Young modulus by EPI method based on modified couple stress theory. Microsyst Technol 24(7):2983–2989. https://doi.org/10.1007/s00542-018-3708-6

    Article  Google Scholar 

  136. Tadi Beni Y, Koochi A, Abadyan M (2011) Theoretical study of the effect of Casimir force, elastic boundary conditions and size dependency on the pull-in instability of beam-type NEMS. Physica E 43(4):979–988. https://doi.org/10.1016/j.physe.2010.11.033

    Article  Google Scholar 

  137. Abdi J, Koochi A, Kazemi AS, Abadyan M (2011) Modeling the effects of size dependence and dispersion forces on the pull-in instability of electrostatic cantilever NEMS using modified couple stress theory. Smart Mater Struct. https://doi.org/10.1088/0964-1726/20/5/055011

    Article  Google Scholar 

  138. Beni YT, Karimipöur I, Abadyan M (2014) Modeling the effect of intermolecular force on the size-dependent pull-in behavior of beam-type NEMS using modified couple stress theory. J Mech Sci Technol 28(9):3749–3757. https://doi.org/10.1007/s12206-014-0836-5

    Article  Google Scholar 

  139. Beni YT, Koochi A, Abadyan M (2014) Using modified couple stress theory for modeling the size-dependent pull-in instability of torsional nano-mirror under casimir force. Int J Optomechatronics 8(1):47–71. https://doi.org/10.1080/15599612.2014.893595

    Article  Google Scholar 

  140. Koochi A, Farrokhabadi A, Abadyan M (2014) Modeling the size dependent instability of NEMS sensor/actuator made of nano-wire with circular cross-section. Microsyst Technol 21(2):355–364. https://doi.org/10.1007/s00542-014-2183-y

    Article  Google Scholar 

  141. SoltanRezaee M, Farrokhabadi A, Ghazavi MR (2016) The influence of dispersion forces on the size-dependent pull-in instability of general cantilever nano-beams containing geometrical non-linearity. Int J Mech Sci 119:114–124. https://doi.org/10.1016/j.ijmecsci.2016.10.010

    Article  Google Scholar 

  142. Fakhrabadi MMS (2017) Application of modified couple stress theory and homotopy perturbationmethod in investigation of electromechanical behaviors of carbon nanotubes. Adv Appl Math Mech 9(1):23–42. https://doi.org/10.4208/aamm.2014.m71

    Article  MathSciNet  MATH  Google Scholar 

  143. Zhang J, Fu Y (2012) Pull-in analysis of electrically actuated viscoelastic microbeams based on a modified couple stress theory. Meccanica 47(7):1649–1658. https://doi.org/10.1007/s11012-012-9545-2

    Article  MathSciNet  MATH  Google Scholar 

  144. Attia MA (2017) Investigation of size-dependent quasistatic response of electrically actuated nonlinear viscoelastic microcantilevers and microbridges. Meccanica 52(10):2391–2420. https://doi.org/10.1007/s11012-016-0595-8

    Article  MathSciNet  MATH  Google Scholar 

  145. Attia MA, Mohamed SA (2017) Nonlinear modeling and analysis of electrically actuated viscoelastic microbeams based on the modified couple stress theory. Appl Math Model 41:195–222. https://doi.org/10.1016/j.apm.2016.08.036

    Article  MathSciNet  MATH  Google Scholar 

  146. Ghayesh MH, Farokhi H (2017) Bistable nonlinear response of MEMS resonators. Nonlinear Dyn 90(3):1627–1645. https://doi.org/10.1007/s11071-017-3753-1

    Article  Google Scholar 

  147. Li L, Zhang Q, Wang W, Han J (2017) Dynamic analysis and design of electrically actuated viscoelastic microbeams considering the scale effect. Int J Non-Linear Mech 90:21–31. https://doi.org/10.1016/j.ijnonlinmec.2017.01.002

    Article  Google Scholar 

  148. Fakhrabadi MMS, Rastgoo A, Ahmadian MT (2013) Investigation of the mechanical behaviors of carbon nanotubes under electrostatic actuation using the modified couple stress theory. Fuller Nanotubes Carbon Nanostruct 21(10):930–945. https://doi.org/10.1080/1536383X.2013.826199

    Article  Google Scholar 

  149. Noghrehabadi A, Eslami M, Ghalambaz M (2013) Influence of size effect and elastic boundary condition on the pull-in instability of nano-scale cantilever beams immersed in liquid electrolytes. Int J Non-Linear Mech 52:73–84. https://doi.org/10.1016/j.ijnonlinmec.2013.01.014

    Article  Google Scholar 

  150. Noghrehabadi A, Eslami M (2016) Analytical study on size-dependent static pull-in analysis of clamped-clamped nano-actuators in liquid electrolytes. Appl Math Model 40(4):3011–3028. https://doi.org/10.1016/j.apm.2015.09.087

    Article  MathSciNet  MATH  Google Scholar 

  151. Rokni H, Seethaler RJ, Milani AS, Hosseini-Hashemi S, Li XF (2013) Analytical closed-form solutions for size-dependent static pull-in behavior in electrostatic micro-actuators via Fredholm integral equation. Sens Actuat A 190:32–43. https://doi.org/10.1016/j.sna.2012.10.035

    Article  Google Scholar 

  152. Shaat M, Mohamed SA (2014) Nonlinear-electrostatic analysis of micro-actuated beams based on couple stress and surface elasticity theories. Int J Mech Sci 84:208–217. https://doi.org/10.1016/j.ijmecsci.2014.04.020

    Article  Google Scholar 

  153. Koochi A, Hosseini-Toudeshky H, Abadyan M (2016) Nonlinear beam formulation incorporating surface energy and size effect: application in nano-bridges. Appl Math Mech (Engl Ed) 37(5):583–600. https://doi.org/10.1007/s10483-016-2073-8

    Article  MathSciNet  MATH  Google Scholar 

  154. Askari AR, Tahani M (2015) Size-dependent dynamic pull-in analysis of beam-type MEMS under mechanical shock based on the modified couple stress theory. Appl Math Model 39(2):934–946. https://doi.org/10.1016/j.apm.2014.07.019

    Article  MathSciNet  MATH  Google Scholar 

  155. Rahaeifard M, Mojahedi M (2017) Size-dependent dynamic behavior of electrostatically actuated microaccelerometers under mechanical shock. Int J Struct Stab Dyn. https://doi.org/10.1142/S0219455417500420

    Article  MathSciNet  MATH  Google Scholar 

  156. Mojahedi M, Rahaeifard M (2015) Static deflection and pull-in instability of the electrostatically actuated bilayer microcantilever beams. Int J Appl Mech. https://doi.org/10.1142/S1758825115500908

    Article  Google Scholar 

  157. Xiao Y, Wang B, Zhou S (2015) Pull-in voltage analysis of electrostatically actuated MEMS with piezoelectric layers: a size-dependent model. Mech Res Commun 66:7–14. https://doi.org/10.1016/j.mechrescom.2015.03.005

    Article  Google Scholar 

  158. Zheng Y, Chen T, Chen C (2017) A size-dependent model to study nonlinear static behavior of piezoelectric cantilever microbeams with damage. Microsyst Technol 23(10):4679–4686. https://doi.org/10.1007/s00542-016-3246-z

    Article  Google Scholar 

  159. Shojaeian M, Beni YT, Ataei H (2016) Size-dependent snap-through and pull-in instabilities of initially curved pre-stressed electrostatic nano-bridges. J Phys D Appl Phys. https://doi.org/10.1088/0022-3727/49/29/295303

    Article  Google Scholar 

  160. Yin T, Wang B, Zhou S, Zhao M (2016) A size-dependent model for beam-like MEMS driven by electrostatic and piezoelectric forces: a variational approach. Physica E 84:46–54. https://doi.org/10.1016/j.physe.2016.05.035

    Article  Google Scholar 

  161. Farokhi H, Ghayesh MH (2017) Nonlinear thermo-mechanical behaviour of MEMS resonators. Microsyst Technol 23(12):5303–5315. https://doi.org/10.1007/s00542-017-3381-1

    Article  Google Scholar 

  162. SoltanRezaee M, Ghazavi MR (2017) Thermal, size and surface effects on the nonlinear pull-in of small-scale piezoelectric actuators. Smart Mater Struct. https://doi.org/10.1088/1361-665X/aa7701

    Article  Google Scholar 

  163. Farda KM, Gharechahi A, Fard NM, Mobki H (2018) Investigation of dynamic instability of three plates switch under step DC voltage actuation using modified couple stress theory. Latin Am J Solids Struct. https://doi.org/10.1590/1679-78254636

    Article  Google Scholar 

  164. Asghari M, Rahaeifard M, Kahrobaiyan MH, Ahmadian MT (2011) The modified couple stress functionally graded Timoshenko beam formulation. Mater Des 32(3):1435–1443. https://doi.org/10.1016/j.matdes.2010.08.046

    Article  MATH  Google Scholar 

  165. Zamanzadeh M, Rezazadeh G, Jafarsadeghi-poornaki I, Shabani R (2013) Static and dynamic stability modeling of a capacitive FGM micro-beam in presence of temperature changes. Appl Math Model 37(10–11):6964–6978. https://doi.org/10.1016/j.apm.2013.02.034

    Article  MathSciNet  MATH  Google Scholar 

  166. Tahani M, Batra RC, Askari AR (2015) Size-dependent free vibrations of electrostatically predeformed functionally graded micro-cantilevers. IOP Conf Ser Mater Sci Eng 87:012117. https://doi.org/10.1088/1757-899x/87/1/012117

    Article  Google Scholar 

  167. Shojaeian M, Zeighampour H (2016) Size dependent pull-in behavior of functionally graded sandwich nanobridges using higher order shear deformation theory. Compos Struct 143:117–129. https://doi.org/10.1016/j.compstruct.2016.02.008

    Article  Google Scholar 

  168. Jia XL, Zhang SM, Ke LL, Yang J, Kitipornchai S (2014) Thermal effect on the pull-in instability of functionally graded micro-beams subjected to electrical actuation. Compos Struct 116:136–146. https://doi.org/10.1016/j.compstruct.2014.05.004

    Article  Google Scholar 

  169. Sun Y, Yu Y, Zhao Y, Zhang N, Ma Y (2016) Nonlinear approximate analysis of electrically actuated functionally graded material micro-beam with influence of thermal stress and the intermolecular force. J Comput Theor Nanosci 13(1):492–499. https://doi.org/10.1166/jctn.2016.4831

    Article  Google Scholar 

  170. Attia MA, Mohamed SA (2018) Pull-in instability of functionally graded cantilever nanoactuators incorporating effects of microstructure, surface energy and intermolecular forces. Int J Appl Mech 10(08):1850091. https://doi.org/10.1142/s1758825118500916

    Article  Google Scholar 

  171. Mokhtari Amir Majdi MA, Tahani M, Askari AR (2019) Size-dependent pull-in instability analysis of electrically actuated packaged FG micro-cantilevers under the effect of mechanical shock. J Braz Soc Mech Sci Eng. https://doi.org/10.1007/s40430-019-1603-4

    Article  Google Scholar 

  172. Attia MA, Mohamed SA (2019) Coupling effect of surface energy and dispersion forces on nonlinear size-dependent pull-in instability of functionally graded micro-/nanoswitches. Acta Mech 230(3):1181–1216. https://doi.org/10.1007/s00707-018-2345-6

    Article  MathSciNet  MATH  Google Scholar 

  173. Gheshlaghi B, Hasheminejad SM, Abbasion S (2010) Size dependent torsional vibration of nanotubes. Physica E 43(1):45–48. https://doi.org/10.1016/j.physe.2010.06.015

    Article  Google Scholar 

  174. Kahrobaiyan MH, Tajalli SA, Movahhedy MR, Akbari J, Ahmadian MT (2011) Torsion of strain gradient bars. Int J Eng Sci 49(9):856–866. https://doi.org/10.1016/j.ijengsci.2011.04.008

    Article  MathSciNet  MATH  Google Scholar 

  175. Tsiatas GC, Katsikadelis JT (2011) A new microstructure-dependent Saint–Venant torsion model based on a modified couple stress theory. Eur J Mech A/Solids 30(5):741–747. https://doi.org/10.1016/j.euromechsol.2011.03.007

    Article  MathSciNet  MATH  Google Scholar 

  176. Li L, Hu YJ, Ling L (2015) Flexural wave propagation in small-scaled functionally graded beams via a nonlocal strain gradient theory. Compos Struct 133:1079–1092. https://doi.org/10.1016/j.compstruct.2015.08.014

    Article  Google Scholar 

  177. Mustapha KB, Zhong ZW (2012) Wave propagation characteristics of a twisted micro scale beam. Int J Eng Sci 53:46–57. https://doi.org/10.1016/j.ijengsci.2011.12.006

    Article  MathSciNet  MATH  Google Scholar 

  178. Güven U (2011) The investigation of the nonlocal longitudinal stress waves with modified couple stress theory. Acta Mech 221(3–4):321–325. https://doi.org/10.1007/s00707-011-0500-4

    Article  MATH  Google Scholar 

  179. Kocatürk T, Akbaş SD (2013) Wave propagation in a microbeam based on the modified couple stress theory. Struct Eng Mech 46(3):417–431. https://doi.org/10.12989/sem.2013.46.3.417

    Article  Google Scholar 

  180. Ma HM, Gao XL, Reddy JN (2008) A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J Mech Phys Solids 56(12):3379–3391. https://doi.org/10.1016/j.jmps.2008.09.007

    Article  MathSciNet  MATH  Google Scholar 

  181. Kahrobaiyan MH, Asghari M, Ahmadian MT (2014) A Timoshenko beam element based on the modified couple stress theory. Int J Mech Sci 79:75–83. https://doi.org/10.1016/j.ijmecsci.2013.11.014

    Article  MATH  Google Scholar 

  182. Dehrouyeh-Semnani AM, Bahrami A (2016) On size-dependent Timoshenko beam element based on modified couple stress theory. Int J Eng Sci 107:134–148. https://doi.org/10.1016/j.ijengsci.2016.07.006

    Article  MathSciNet  MATH  Google Scholar 

  183. Asghari M, Kahrobaiyan MH, Ahmadian MT (2010) A nonlinear Timoshenko beam formulation based on the modified couple stress theory. Int J Eng Sci 48(12):1749–1761. https://doi.org/10.1016/j.ijengsci.2010.09.025

    Article  MathSciNet  MATH  Google Scholar 

  184. Farokhi H, Ghayesh MH (2015) Thermo-mechanical dynamics of perfect and imperfect Timoshenko microbeams. Int J Eng Sci 91:12–33. https://doi.org/10.1016/j.ijengsci.2015.02.005

    Article  MathSciNet  MATH  Google Scholar 

  185. Gao XL (2014) A new Timoshenko beam model incorporating microstructure and surface energy effects. Acta Mech 226(2):457–474. https://doi.org/10.1007/s00707-014-1189-y

    Article  MathSciNet  MATH  Google Scholar 

  186. Taati E, Molaei Najafabadi M, Basirat Tabrizi H (2014) Size-dependent generalized thermoelasticity model for Timoshenko microbeams. Acta Mech 225(7):1823–1842. https://doi.org/10.1007/s00707-013-1027-7

    Article  MathSciNet  MATH  Google Scholar 

  187. Liu YP, Reddy JN (2011) A nonlocal curved beam model based on a modified couple stress theory. Int J Struct Stab Dyn 11(3):495–512. https://doi.org/10.1142/S0219455411004233

    Article  MathSciNet  MATH  Google Scholar 

  188. Roque CMC, Fidalgo DS, Ferreira AJM, Reddy JN (2013) A study of a microstructure-dependent composite laminated Timoshenko beam using a modified couple stress theory and a meshless method. Compos Struct 96:532–537. https://doi.org/10.1016/j.compstruct.2012.09.011

    Article  Google Scholar 

  189. Komijani M, Reddy JN, Eslami MR (2014) Nonlinear analysis of microstructure-dependent functionally graded piezoelectric material actuators. J Mech Phys Solids 63(1):214–227. https://doi.org/10.1016/j.jmps.2013.09.008

    Article  MathSciNet  Google Scholar 

  190. Babaei H, Eslami MR (2019) Thermally induced large deflection of FGM shallow micro-arches with integrated surface piezoelectric layers based on modified couple stress theory. Acta Mech. https://doi.org/10.1007/s00707-019-02384-0

    Article  MathSciNet  MATH  Google Scholar 

  191. Liang LN, Ke LL, Wang YS, Yang J, Kitipornchai S (2015) Flexural vibration of an atomic force microscope cantilever based on modified couple stress theory. Int J Struct Stab Dyn. https://doi.org/10.1142/S0219455415400258

    Article  MathSciNet  MATH  Google Scholar 

  192. Ilkhani MR, Hosseini-Hashemi SH (2016) Size dependent vibro-buckling of rotating beam based on modified couple stress theory. Compos Struct 143:75–83. https://doi.org/10.1016/j.compstruct.2016.02.013

    Article  Google Scholar 

  193. Arani AG, Abdollahian M, Kolahchi R (2015) Nonlinear vibration of embedded smart composite microtube conveying fluid based on modified couple stress theory. Polym Compos 36(7):1314–1324. https://doi.org/10.1002/pc.23036

    Article  Google Scholar 

  194. Dos Santos JVA, Reddy JN (2012) Free vibration and buckling analysis of beams with a modified couple-stress theory. Int J Appl Mech. https://doi.org/10.1142/S1758825112500263

    Article  Google Scholar 

  195. Xia W, Wang L (2010) Microfluid-induced vibration and stability of structures modeled as microscale pipes conveying fluid based on non-classical Timoshenko beam theory. Microfluid Nanofluid 9(4–5):955–962. https://doi.org/10.1007/s10404-010-0618-z

    Article  Google Scholar 

  196. Ke LL, Wang YS (2011) Flow-induced vibration and instability of embedded double-walled carbon nanotubes based on a modified couple stress theory. Physica E 43(5):1031–1039. https://doi.org/10.1016/j.physe.2010.12.010

    Article  Google Scholar 

  197. Ke LL, Wang YS, Wang ZD (2011) Thermal effect on free vibration and buckling of size-dependent microbeams. Physica E 43(7):1387–1393. https://doi.org/10.1016/j.physe.2011.03.009

    Article  Google Scholar 

  198. Ghayesh MH, Amabili M, Farokhi H (2013) Three-dimensional nonlinear size-dependent behaviour of Timoshenko microbeams. Int J Eng Sci 71:1–14. https://doi.org/10.1016/j.ijengsci.2013.04.003

    Article  MathSciNet  MATH  Google Scholar 

  199. Chen WJ, Li XP (2013) Size-dependent free vibration analysis of composite laminated Timoshenko beam based on new modified couple stress theory. Arch Appl Mech 83(3):431–444. https://doi.org/10.1007/s00419-012-0689-2

    Article  MATH  Google Scholar 

  200. Ansari R, Ashrafi MA, Hosseinzadeh S (2014) Vibration characteristics of piezoelectric microbeams based on the modified couple stress theory. Shock Vib. https://doi.org/10.1155/2014/598292

    Article  Google Scholar 

  201. Dehrouyeh-Semnani AM, Dehrouyeh M, Zafari-Koloukhi H, Ghamami M (2015) Size-dependent frequency and stability characteristics of axially moving microbeams based on modified couple stress theory. Int J Eng Sci 97:98–112. https://doi.org/10.1016/j.ijengsci.2015.09.003

    Article  MathSciNet  MATH  Google Scholar 

  202. Ghorbanpour Arani A, Dashti P, Amir S, Yousefi M (2015) Nonlinear vibration of coupled nano- and microstructures conveying fluid based on Timoshenko beam model under two-dimensional magnetic field. Acta Mech 226(8):2729–2760. https://doi.org/10.1007/s00707-015-1342-2

    Article  MathSciNet  MATH  Google Scholar 

  203. Mohamadi B, Eftekhari SA, Toghraie D (2019) Numerical investigation of nonlinear vibration analysis for triple-walled carbon nanotubes conveying viscous fluid. Int J Numer Meth Heat Fluid Flow 30(4):1689–1723. https://doi.org/10.1108/HFF-10-2018-0600

    Article  Google Scholar 

  204. Farokhi H, Ghayesh MH (2017) Nonlinear resonant response of imperfect extensible Timoshenko microbeams. Int J Mech Mater Des 13(1):43–55. https://doi.org/10.1007/s10999-015-9316-z

    Article  Google Scholar 

  205. Babaei A, Rahmani A (2018) On dynamic-vibration analysis of temperature-dependent Timoshenko microbeam possessing mutable nonclassical length scale parameter. Mech Adv Mater Struct. https://doi.org/10.1080/15376494.2018.1516252

    Article  Google Scholar 

  206. Akgöz B, Civalek Ö (2018) Vibrational characteristics of embedded microbeams lying on a two-parameter elastic foundation in thermal environment. Compos B Eng 150:68–77. https://doi.org/10.1016/j.compositesb.2018.05.049

    Article  Google Scholar 

  207. Jafari-Talookolaei RA, Abedi M, Şimşek M, Attar M (2018) Dynamics of a micro scale Timoshenko beam subjected to a moving micro particle based on the modified couple stress theory. J Vib Control 24(3):527–548. https://doi.org/10.1177/1077546316645237

    Article  MathSciNet  Google Scholar 

  208. Allahkarami F, Nikkhah-Bahrami M (2018) The effects of agglomerated CNTs as reinforcement on the size-dependent vibration of embedded curved microbeams based on modified couple stress theory. Mech Adv Mater Struct 25(12):995–1008. https://doi.org/10.1080/15376494.2017.1323144

    Article  Google Scholar 

  209. Ke L-L, Wang Y-S, Yang J, Kitipornchai S (2012) Free vibration of size-dependent Mindlin microplates based on the modified couple stress theory. J Sound Vib 331(1):94–106. https://doi.org/10.1016/j.jsv.2011.08.020

    Article  Google Scholar 

  210. Komijani M, Reddy JN, Ferreira AJM (2014) Nonlinear stability and vibration of pre/post-buckled microstructure-dependent FGPM actuators. Meccanica 49(11):2729–2745. https://doi.org/10.1007/s11012-013-9834-4

    Article  MathSciNet  MATH  Google Scholar 

  211. Ghadiri M, Shafiei N (2016) Vibration analysis of rotating functionally graded Timoshenko microbeam based on modified couple stress theory under different temperature distributions. Acta Astronaut 121:221–240. https://doi.org/10.1016/j.actaastro.2016.01.003

    Article  Google Scholar 

  212. Wattanasakulpong N, Chaikittiratana A, Pornpeerakeat S (2020) Vibration of size-dependent functionally graded sandwich microbeams with different boundary conditions based on the modified couple stress theory. J Sandwich Struct Mater 22(2):220–247. https://doi.org/10.1177/1099636217738909

    Article  Google Scholar 

  213. Rahmani O, Hosseini SAH, Ghoytasi I, Golmohammadi H (2018) Free vibration of deep curved FG nano-beam based on modified couple stress theory. Steel Compos Struct 26(5):607–620. https://doi.org/10.12989/scs.2018.26.5.607

    Article  Google Scholar 

  214. Khajueenejad F, Ghanbari J (2015) Internal length parameter and buckling analysis of carbon nanotubes using modified couple stress theory and Timoshenko beam model. Mater Res Express. https://doi.org/10.1088/2053-1591/2/10/105009

    Article  Google Scholar 

  215. Fu Y, Zhang J (2010) Modeling and analysis of microtubules based on a modified couple stress theory. Physica E 42(5):1741–1745. https://doi.org/10.1016/j.physe.2010.01.033

    Article  Google Scholar 

  216. Khorshidi MA, Shariati M (2017) A multi-spring model for buckling analysis of cracked timoshenko nanobeams based on modified couple stress theory. J Theor Appl Mech (Poland) 55(4):1127–1139. https://doi.org/10.15632/jtam-pl.55.4.1127

    Article  Google Scholar 

  217. Farokhi H, Ghayesh MH, Hussain S (2016) Dynamic stability in parametric resonance of axially excited Timoshenko microbeams. Meccanica 51(10):2459–2472. https://doi.org/10.1007/s11012-016-0380-8

    Article  MathSciNet  Google Scholar 

  218. Tao C, Fu Y (2017) Thermal buckling and postbuckling analysis of size-dependent composite laminated microbeams based on a new modified couple stress theory. Acta Mech 228(5):1711–1724. https://doi.org/10.1007/s00707-016-1770-7

    Article  MathSciNet  MATH  Google Scholar 

  219. Ke LL, Wang YS (2011) Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory. Compos Struct 93(2):342–350. https://doi.org/10.1016/j.compstruct.2010.09.008

    Article  Google Scholar 

  220. Zhong ZY, Zhang WM, Meng G, Wang MY (2015) Thermoelastic damping in the size-dependent microplate resonators based on modified couple stress theory. J Microelectromech Syst 24(2):431–445. https://doi.org/10.1109/JMEMS.2014.2332757

    Article  Google Scholar 

  221. Akgöz B, Civalek O (2013) Modeling and analysis of micro-sized plates resting on elastic medium using the modified couple stress theory. Meccanica 48(4):863–873. https://doi.org/10.1007/s11012-012-9639-x

    Article  MathSciNet  MATH  Google Scholar 

  222. Shaat M, Mahmoud FF, Gao XL, Faheem AF (2014) Size-dependent bending analysis of Kirchhoff nano-plates based on a modified couple-stress theory including surface effects. Int J Mech Sci 79:31–37. https://doi.org/10.1016/j.ijmecsci.2013.11.022

    Article  Google Scholar 

  223. Zhang GY, Gao XL, Wang JZ (2015) A non-classical model for circular Kirchhoff plates incorporating microstructure and surface energy effects. Acta Mech 226(12):4073–4085. https://doi.org/10.1007/s00707-015-1478-0

    Article  MathSciNet  MATH  Google Scholar 

  224. Wang YG, Lin WH, Zhou CL (2014) Nonlinear bending of size-dependent circular microplates based on the modified couple stress theory. Arch Appl Mech 84(3):391–400. https://doi.org/10.1007/s00419-013-0807-9

    Article  MATH  Google Scholar 

  225. Tsiatas GC, Yiotis AJ (2015) Size effect on the static, dynamic and buckling analysis of orthotropic Kirchhoff-type skew micro-plates based on a modified couple stress theory: comparison with the nonlocal elasticity theory. Acta Mech 226(4):1267–1281. https://doi.org/10.1007/s00707-014-1249-3

    Article  MathSciNet  MATH  Google Scholar 

  226. Gao XL, Zhang GY (2016) A non-classical Kirchhoff plate model incorporating microstructure, surface energy and foundation effects. Continuum Mech Thermodyn 28(1–2):195–213. https://doi.org/10.1007/s00161-015-0413-x

    Article  MathSciNet  MATH  Google Scholar 

  227. Zhang GY, Gao XL, Guo ZY (2017) A non-classical model for an orthotropic Kirchhoff plate embedded in a viscoelastic medium. Acta Mech 228(11):3811–3825. https://doi.org/10.1007/s00707-017-1906-4

    Article  MathSciNet  MATH  Google Scholar 

  228. Attia MA, Mahmoud FF (2017) Size-dependent behavior of viscoelastic nanoplates incorporating surface energy and microstructure effects. Int J Mech Sci 123:117–132. https://doi.org/10.1016/j.ijmecsci.2017.01.045

    Article  Google Scholar 

  229. Rahaeifard M, Mojahedi M (2017) On the mechanics of laminated microplates. Int J Eng Sci 119:180–188. https://doi.org/10.1016/j.ijengsci.2017.06.003

    Article  MathSciNet  MATH  Google Scholar 

  230. Asghari M, Taati E (2013) A size-dependent model for functionally graded micro-plates for mechanical analyses. J Vib Control 19(11):1614–1632. https://doi.org/10.1177/1077546312442563

    Article  MathSciNet  Google Scholar 

  231. Thai HT, Choi DH (2013) Size-dependent functionally graded Kirchhoff and Mindlin plate models based on a modified couple stress theory. Compos Struct 95:142–153. https://doi.org/10.1016/j.compstruct.2012.08.023

    Article  Google Scholar 

  232. Liu S, Yu T, Bui TQ, Xia S (2017) Size-dependent analysis of homogeneous and functionally graded microplates using IGA and a non-classical Kirchhoff plate theory. Compos Struct 172:34–44. https://doi.org/10.1016/j.compstruct.2017.03.067

    Article  Google Scholar 

  233. Lou J, He L (2015) Closed-form solutions for nonlinear bending and free vibration of functionally graded microplates based on the modified couple stress theory. Compos Struct 131:810–820. https://doi.org/10.1016/j.compstruct.2015.06.031

    Article  Google Scholar 

  234. Eshraghi I, Dag S, Soltani N (2016) Bending and free vibrations of functionally graded annular and circular micro-plates under thermal loading. Compos Struct 137:196–207. https://doi.org/10.1016/j.compstruct.2015.11.024

    Article  Google Scholar 

  235. Reddy JN, Romanoff J, Loya JA (2016) Nonlinear finite element analysis of functionally graded circular plates with modified couple stress theory. Eur J Mech A/Solids 56:92–104. https://doi.org/10.1016/j.euromechsol.2015.11.001

    Article  MathSciNet  MATH  Google Scholar 

  236. Wang YG, Song HF, Lin WH, Xu L (2017) Large deflection analysis of functionally graded circular microplates with modified couple stress effect. J Braz Soc Mech Sci Eng 39(3):981–991. https://doi.org/10.1007/s40430-016-0564-0

    Article  Google Scholar 

  237. Aghazadeh R, Dag S, Cigeroglu E (2018) Thermal effect on bending, buckling and free vibration of functionally graded rectangular micro-plates possessing a variable length scale parameter. Microsyst Technol 24(8):3549–3572. https://doi.org/10.1007/s00542-018-3773-x

    Article  Google Scholar 

  238. Kim J, Żur KK, Reddy JN (2019) Bending, free vibration, and buckling of modified couples stress-based functionally graded porous micro-plates. Compos Struct 209:879–888. https://doi.org/10.1016/j.compstruct.2018.11.023

    Article  Google Scholar 

  239. Yin L, Qian Q, Wang L, Xia W (2010) Vibration analysis of microscale plates based on modified couple stress theory. Acta Mech Solida Sin 23(5):386–393. https://doi.org/10.1016/S0894-9166(10)60040-7

    Article  Google Scholar 

  240. Jomehzadeh E, Noori HR, Saidi AR (2011) The size-dependent vibration analysis of micro-plates based on a modified couple stress theory. Phys E-Low-Dimens Syst Nanostruct 43(4):877–883. https://doi.org/10.1016/j.physe.2010.11.005

    Article  Google Scholar 

  241. Askari AR, Tahani M (2015) Analytical determination of size-dependent natural frequencies of fully clamped rectangular microplates based on the modified couple stress theory. J Mech Sci Technol 29(5):2135–2145. https://doi.org/10.1007/s12206-015-0435-0

    Article  Google Scholar 

  242. Wang KF, Kitamura T, Wang B (2015) Nonlinear pull-in instability and free vibration of micro/nanoscale plates with surface energy—a modified couple stress theory model. Int J Mech Sci 99:288–296. https://doi.org/10.1016/j.ijmecsci.2015.05.006

    Article  Google Scholar 

  243. Zhou X, Wang L (2012) Vibration and stability of micro-scale cylindrical shells conveying fluid based on modified couple stress theory. Micro Nano Lett 7(7):679–684. https://doi.org/10.1049/mnl.2012.0184

    Article  Google Scholar 

  244. Wang YG, Lin WH, Liu N (2013) Large amplitude free vibration of size-dependent circular microplates based on the modified couple stress theory. Int J Mech Sci 71:51–57. https://doi.org/10.1016/j.ijmecsci.2013.03.008

    Article  Google Scholar 

  245. Gholipour A, Farokhi H, Ghayesh MH (2015) In-plane and out-of-plane nonlinear size-dependent dynamics of microplates. Nonlinear Dyn 79(3):1771–1785. https://doi.org/10.1007/s11071-014-1773-7

    Article  Google Scholar 

  246. Şimşek M, Aydın M, Yurtcu HH, Reddy JN (2015) Size-dependent vibration of a microplate under the action of a moving load based on the modified couple stress theory. Acta Mech 226(11):3807–3822. https://doi.org/10.1007/s00707-015-1437-9

    Article  MathSciNet  MATH  Google Scholar 

  247. Tahani M, Askari AR, Mohandes Y, Hassani B (2015) Size-dependent free vibration analysis of electrostatically pre-deformed rectangular micro-plates based on the modified couple stress theory. Int J Mech Sci 94–95:185–198. https://doi.org/10.1016/j.ijmecsci.2015.03.004

    Article  Google Scholar 

  248. Korayem MH, Homayooni A (2017) The size-dependent analysis of multilayer micro-cantilever plate with piezoelectric layer incorporated voltage effect based on a modified couple stress theory. Eur J Mech A/Solids 61:59–72. https://doi.org/10.1016/j.euromechsol.2016.08.013

    Article  MathSciNet  MATH  Google Scholar 

  249. Wang KF, Wang B, Zhang C (2017) Surface energy and thermal stress effect on nonlinear vibration of electrostatically actuated circular micro-/nanoplates based on modified couple stress theory. Acta Mech 228(1):129–140. https://doi.org/10.1007/s00707-016-1701-7

    Article  MathSciNet  MATH  Google Scholar 

  250. Mohammadimehr M, Mohandes M, Moradi M (2016) Size dependent effect on the buckling and vibration analysis of double-bonded nanocomposite piezoelectric plate reinforced by boron nitride nanotube based on modified couple stress theory. JVC/J Vib Control 22(7):1790–1807. https://doi.org/10.1177/1077546314544513

    Article  MathSciNet  Google Scholar 

  251. Farokhi H, Ghayesh MH, Gholipour A, Tavallaeinejad M (2017) Nonlinear oscillations of viscoelastic microplates. Int J Eng Sci 118:56–69. https://doi.org/10.1016/j.ijengsci.2017.05.006

    Article  MathSciNet  MATH  Google Scholar 

  252. Ghayesh MH (2018) Nonlinear dynamics of multilayered microplates. J Comput Nonlinear Dyn 13(2):021006. https://doi.org/10.1115/1.4037596

    Article  Google Scholar 

  253. Ashoori AR, Vanini SAS, Salari E (2017) Size-dependent axisymmetric vibration of functionally graded circular plates in bifurcation/limit point instability. Appl Phys A Mater Sci Process. https://doi.org/10.1007/s00339-017-0825-5

    Article  Google Scholar 

  254. Fang J, Wang H, Zhang X (2019) On size-dependent dynamic behavior of rotating functionally graded Kirchhoff microplates. Int J Mech Sci 152:34–50. https://doi.org/10.1016/j.ijmecsci.2018.12.045

    Article  Google Scholar 

  255. Gupta A, Jain NK, Salhotra R, Joshi PV (2015) Effect of microstructure on vibration characteristics of partially cracked rectangular plates based on a modified couple stress theory. Int J Mech Sci 100:269–282. https://doi.org/10.1016/j.ijmecsci.2015.07.004

    Article  Google Scholar 

  256. Farokhi H, Ghayesh MH, Gholipour A, Tavallaeinejad M (2018) Stability and nonlinear dynamical analysis of functionally graded microplates. Microsyst Technol 24(5):2109–2121. https://doi.org/10.1007/s00542-018-3849-7

    Article  Google Scholar 

  257. Ghadiri M, Mahinzare M, Shafiei N, Ghorbani K (2017) On size-dependent thermal buckling and free vibration of circular FG Microplates in thermal environments. Microsyst Technol 23(10):4989–5001. https://doi.org/10.1007/s00542-017-3308-x

    Article  Google Scholar 

  258. Ghayesh MH, Farokhi H, Gholipour A, Tavallaeinejad M (2018) Nonlinear oscillations of functionally graded microplates. Int J Eng Sci 122:56–72. https://doi.org/10.1016/j.ijengsci.2017.03.014

    Article  MATH  Google Scholar 

  259. Ghayesh MH, Farokhi H, Gholipour A, Tavallaeinejad M (2017) Dynamic characterisation of functionally graded imperfect Kirchhoff microplates. Compos Struct 179:720–731. https://doi.org/10.1016/j.compstruct.2017.04.075

    Article  MATH  Google Scholar 

  260. Yang Z, He D (2017) Vibration and buckling of orthotropic functionally graded micro-plates on the basis of a re-modified couple stress theory. Res Phys 7:3778–3787. https://doi.org/10.1016/j.rinp.2017.09.026

    Article  Google Scholar 

  261. Pal S, Das D (2020) Free vibration behavior of rotating bidirectional functionally-graded micro-disk for flexural and torsional modes in thermal environment. Int J Mech Sci. https://doi.org/10.1016/j.ijmecsci.2020.105635

    Article  Google Scholar 

  262. Noori HR, Jomehzadeh E (2014) A Levy-type solution for buckling analysis of micro-plates considering the small length scale. Mech Ind 15(3):225–232. https://doi.org/10.1051/meca/2014029

    Article  Google Scholar 

  263. Chen C, Yuan J, Mao Y (2017) Post-buckling of size-dependent micro-plate considering damage effects. Nonlinear Dyn 90(2):1301–1314. https://doi.org/10.1007/s11071-017-3727-3

    Article  Google Scholar 

  264. Taati E (2016) Analytical solutions for the size dependent buckling and postbuckling behavior of functionally graded micro-plates. Int J Eng Sci 100:45–60. https://doi.org/10.1016/j.ijengsci.2015.11.007

    Article  MathSciNet  MATH  Google Scholar 

  265. Mirsalehi M, Azhari M, Amoushahi H (2015) Stability of thin FGM microplate subjected to mechanical and thermal loading based on the modified couple stress theory and spline finite strip method. Aerosp Sci Technol 47:356–366. https://doi.org/10.1016/j.ast.2015.10.001

    Article  Google Scholar 

  266. Zandekarimi S, Asadi B, Rahaeifard M (2018) Size dependent thermal buckling and postbuckling of functionally graded circular microplates based on modified couple stress theory. J Therm Stresses 41(1):1–16. https://doi.org/10.1080/01495739.2017.1364612

    Article  Google Scholar 

  267. Ashoori AR, Sadough Vanini SA (2016) Thermal buckling of annular microstructure-dependent functionally graded material plates resting on an elastic medium. Compos B Eng 87:245–255. https://doi.org/10.1016/j.compositesb.2015.10.024

    Article  MATH  Google Scholar 

  268. Ashoori AR, Sadough Vanini SA (2016) Nonlinear thermal stability and snap-through behavior of circular microstructure-dependent FGM plates. Eur J Mech A/Solids 59:323–332. https://doi.org/10.1016/j.euromechsol.2016.04.007

    Article  MathSciNet  MATH  Google Scholar 

  269. Askari AR, Tahani M (2017) Size-dependent dynamic pull-in analysis of geometric non-linear micro-plates based on the modified couple stress theory. Physica E 86:262–274. https://doi.org/10.1016/j.physe.2016.10.035

    Article  Google Scholar 

  270. Kazemi A, Vatankhah R, Farid M (2017) Nonlinear pull-in instability of microplates with piezoelectric layers using modified couple stress theory. Int J Mech Sci 130:90–98. https://doi.org/10.1016/j.ijmecsci.2017.05.044

    Article  Google Scholar 

  271. Farokhi H, Ghayesh MH (2018) Nonlinear mechanics of electrically actuated microplates. Int J Eng Sci 123:197–213. https://doi.org/10.1016/j.ijengsci.2017.08.017

    Article  MathSciNet  MATH  Google Scholar 

  272. Ma HM, Gao XL, Reddy JN (2011) A non-classical Mindlin plate model based on a modified couple stress theory. Acta Mech 220(1–4):217–235. https://doi.org/10.1007/s00707-011-0480-4

    Article  MATH  Google Scholar 

  273. Roque CMC, Ferreira AJM, Reddy JN (2013) Analysis of Mindlin micro plates with a modified couple stress theory and a meshless method. Appl Math Model 37(7):4626–4633. https://doi.org/10.1016/j.apm.2012.09.063

    Article  MathSciNet  MATH  Google Scholar 

  274. Zhou SS, Gao XL (2014) A nonclassical model for circular mindlin plates based on a modified couple stress theory. J Appl Mech Trans ASME. DOI 10(1115/1):4026274

    Google Scholar 

  275. Karttunen AT, Reddy JN, Romanoff J (2017) Closed-form solution for circular microstructure-dependent Mindlin plates. Acta Mech 228(1):323–331. https://doi.org/10.1007/s00707-016-1702-6

    Article  MathSciNet  MATH  Google Scholar 

  276. Ansari R, Gholami R, Faghih Shojaei M, Mohammadi V, Darabi MA (2015) Size-dependent nonlinear bending and postbuckling of functionally graded Mindlin rectangular microplates considering the physical neutral plane position. Compos Struct 127:87–98. https://doi.org/10.1016/j.compstruct.2015.02.082

    Article  Google Scholar 

  277. Mahmoud FF, Shaat M (2015) A new mindlin FG plate model incorporating microstructure and surface energy effects. Struct Eng Mech 53(1):105–130. https://doi.org/10.12989/sem.2015.53.1.105

    Article  Google Scholar 

  278. Ke LL, Yang J, Kitipornchai S, Bradford MA (2012) Bending, buckling and vibration of size-dependent functionally graded annular microplates. Compos Struct 94(11):3250–3257. https://doi.org/10.1016/j.compstruct.2012.04.037

    Article  Google Scholar 

  279. Omiddezyani S, Jafari-Talookolaei R-A, Abedi M, Afrasiab H (2018) The size-dependent free vibration analysis of a rectangular Mindlin microplate coupled with fluid. Ocean Eng 163:617–629. https://doi.org/10.1016/j.oceaneng.2018.06.038

    Article  Google Scholar 

  280. Ke LL, Yang J, Kitipornchai S, Bradford MA, Wang YS (2013) Axisymmetric nonlinear free vibration of size-dependent functionally graded annular microplates. Compos B Eng 53:207–217. https://doi.org/10.1016/j.compositesb.2013.04.066

    Article  Google Scholar 

  281. Ansari R, Faghih Shojaei M, Mohammadi V, Gholami R, Darabi MA (2014) Nonlinear vibrations of functionally graded Mindlin microplates based on the modified couple stress theory. Compos Struct 114(1):124–134. https://doi.org/10.1016/j.compstruct.2014.04.013

    Article  Google Scholar 

  282. Lou J, He L, Yang J, Kitipornchai S, Wu H (2018) Size and foundation effects on the vibration of buckled functionally graded microplates within the modified couple stress theory framework. Int J Appl Mech. https://doi.org/10.1142/S1758825118500680

    Article  Google Scholar 

  283. Ansari R, Faghihshojaei M, Mohammadi V, Gholami R, Darabi MA (2014) Size-dependent vibrations of post-buckled functionally graded mindlin rectangular microplates. Latin Am J Solids Struct 11(13):2351–2378. https://doi.org/10.1590/S1679-78252014001300003

    Article  Google Scholar 

  284. Şimşek M, Aydın M (2017) Size-dependent forced vibration of an imperfect functionally graded (FG) microplate with porosities subjected to a moving load using the modified couple stress theory. Compos Struct 160:408–421. https://doi.org/10.1016/j.compstruct.2016.10.034

    Article  Google Scholar 

  285. Liu S, Yu T, Van Lich L, Yin S, Bui TQ (2018) Size effect on cracked functional composite micro-plates by an XIGA-based effective approach. Meccanica 53(10):2637–2658. https://doi.org/10.1007/s11012-018-0848-9

    Article  MathSciNet  MATH  Google Scholar 

  286. Lou J, He L, Du J, Wu H (2016) Buckling and post-buckling analyses of piezoelectric hybrid microplates subject to thermo-electro-mechanical loads based on the modified couple stress theory. Compos Struct 153:332–344. https://doi.org/10.1016/j.compstruct.2016.05.107

    Article  Google Scholar 

  287. Ke LL, Yang J, Kitipornchai S, Wang YS (2014) Axisymmetric postbuckling analysis of size-dependent functionally graded annular microplates using the physical neutral plane. Int J Eng Sci 81:66–81. https://doi.org/10.1016/j.ijengsci.2014.04.005

    Article  MathSciNet  MATH  Google Scholar 

  288. Wu C, Lou J, He L, Du J, Wu H (2018) Buckling and post-buckling of symmetric functionally graded microplate lying on nonlinear elastic foundation based on modified couple stress theory. Int J Struct Stab Dyn. https://doi.org/10.1142/S0219455418501109

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge the support by the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2017RA006 and ZR2017LEE013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengli Kong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, S. A Review on the Size-Dependent Models of Micro-beam and Micro-plate Based on the Modified Couple Stress Theory. Arch Computat Methods Eng 29, 1–31 (2022). https://doi.org/10.1007/s11831-021-09567-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-021-09567-w

Navigation