Skip to main content
Log in

Effects of size-dependent elasticity on stability of nanotweezers

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

It is well-recognized that the electromechanical response of a nanostructure is affected by its element size. In the present article, the size dependent stability behavior and nanotweezers fabricated from nanowires are investigated by modified couple stress elasticity (MCSE). The governing equation of the nanotweezers is obtained by taking into account the presence of Coulomb and intermolecular attractions. To solve the equation, four techniques, i.e., the modified variational iteration method (MVIM), the monotonic iteration method (MIM), the MAPLE numerical solver, and a lumped model, are used. The variations of the arm displacement of the tweezers versus direct current (DC) voltage are obtained. The instability parameters, i.e., pull-in voltage and deflection of the system, are computed. The results show that size-dependency will affect the stability of the nanotweezers significantly if the diameter of the nanowire is of the order of the length scale. The impact of intermolecular attraction on the size-dependent stability of the system is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Farrokhabadi, A., Rach, R., and Abadyan, M. Modeling the static response and pull-in instability of CNT nanotweezers under the Coulomb and van der Waals attractions. Physica E, 53, 137–145 (2013)

    Article  Google Scholar 

  2. Kim, P. and Lieber, C. M. Nanotube nanotweezers. Science, 286, 2148–2150 (1999)

    Article  Google Scholar 

  3. Sasaki, N., Toyoda, A., Sayito, H., Itamura, N., Ohyama, M., and Miura, K. Theoretical simulation of atomic-scale peeling of single-walled carbon nanotube from graphite surface. e-Journal of Surface Science and Nanotechnology, 4, 133–137 (2006)

    Article  Google Scholar 

  4. Ke, C. H., Pugno, N., Peng, B., and Espinosa, H. D. Experiments and modeling of carbon nanotube NEMS device. Journal of the Mechanics and Physics of Solids, 53, 1314–1333 (2005)

    Article  MATH  Google Scholar 

  5. Jiang, L., Tan, H., Wu, J., Huang, Y., and Hwang, K. C. Continuum modeling of interfaces in polymer matrix composites reinforced by carbon nanotubes. Nano, 2, 139–148 (2007)

    Article  Google Scholar 

  6. Koochi, A., Kazemi, A. S., Noghrehabadi, A., Yekrangi, A., and Abadyan, M. New approach to model the buckling and stable length of multi walled carbon nanotube probes near graphite sheets. Materials and Design, 32, 2949–2955 (2011)

    Article  Google Scholar 

  7. Farrokhabadi, A., Koochi, A., and Abadyan, M. Modeling the instability of CNT tweezers using a continuum model. Microsystem Technologies, 20, 291–302 (2014)

    Article  Google Scholar 

  8. Noghrehabadi, A., Ghalambaz, M., Beni, Y. T., Abadyan, M., Abadi, M. N., and Abadi, M. N. A new solution on the buckling and stable length of multi wall carbon nanotube probes near graphite sheets. Procedia Engineering, 10, 3725–3733 (2011)

    Article  Google Scholar 

  9. Noghrehabadi, A., Ghalambaz, M., and Ghanbarzadeh, A. Buckling of multi wall carbon nanotube cantilevers in the vicinity of graphite sheets using monotone positive method. Journal of Computational and Applied Research in Mechanical Engineering, 1, 89–97 (2012)

    Google Scholar 

  10. Lin, W. H. and Zhao, Y. P. Casimir effect on the pull-in parameters of nanometer switches. Microsystem Technologies, 11, 80–85 (2005)

    Article  Google Scholar 

  11. Guo, J. G. and Zhao, Y. P. Influence of van der Waals and Casimir forces on electrostatic torsional actuators. Journal of Microelectromechanical Systems, 13, 1027–1035 (2004)

    Article  Google Scholar 

  12. Guo, J. G. and Zhao, Y. P. Dynamic stability of electrostatic torsional actuators with van der Waals effect. International Journal of Solids and Structures, 43, 675–685 (2006)

    Article  MATH  Google Scholar 

  13. Wang, G. W., Zhang, Y., Zhao, Y. P., and Yang, G. T. Pull-in instability study of carbon nanotubes tweezers under the influence of van der Waals forces. Journal of Micromechanics and Microengineering, 14, 1119–1125 (2004)

    Article  Google Scholar 

  14. Fleck, N. A., Muller, G. M., Ashby, M. F., and Hutchinson, J. W. Strain gradient plasticity: theory and experiment. Acta Metallurgica et Materialia, 42, 475–487 (1994)

    Article  Google Scholar 

  15. Lam, D. C. C., Yang, F., Chong, A. C. M., Wang, J., and Tong, P. Experiments and theory in strain gradient elasticity. Journal of the Mechanics and Physics of Solids, 51, 1477–1503 (2003)

    Article  MATH  Google Scholar 

  16. McFarland, A. W. and Colton, J. S. Thermoplastic polymer microcantilever sensors fabricated via micromolding. Journal of Micromechanics and Microengineering, 15, 1060–1067 (2005)

    Article  Google Scholar 

  17. Aydogdu, M. A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration. Physica E, 41, 1651–1655 (2009)

    Article  Google Scholar 

  18. Yang, J., Ke, L. L., and Kitipornchai, S. Nonlinear free vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory. Physica E, 42, 1727–1735 (2010)

    Article  Google Scholar 

  19. Ejike, U. B. The plane circular crack problem in the linearized couple-stress theory. International Journal of Engineering Science, 7, 947–961 (1969)

    Article  MATH  Google Scholar 

  20. Kishida, M. and Sasaki, K. Torsion of a circular bar with annular groove in couple-stress theory. International Journal of Engineering Science, 28, 773–781 (1990)

    Article  Google Scholar 

  21. Yang, F., Chong, A. C. M., Lam, D. C. C., and Tong, P. Couple stress based strain gradient theory for elasticity. International Journal of Solids and Structures, 39, 2731–2743 (2002)

    Article  MATH  Google Scholar 

  22. Park, S. K. and Gao, X. L. Bernoulli-Euler beam model based on a modified couple stress theory. Journal of Micromechanics and Microengineering, 16, 2355–2359 (2006)

    Article  Google Scholar 

  23. Tadi-Beni, Y., Koochi, A., Kazemi, A. S., and Abadyan, M. Theoretical study of the effect of Casimir force, elastic boundary conditions and size dependency on the pull-in instability of beam-type NEMS. Physica E, 43, 979–988 (2011)

    Article  Google Scholar 

  24. Ma, H. M., Gao, X. L., and Reddy, J. N. A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. Journal of the Mechanics and Physics of Solids, 56, 3379–3391 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. Abdi, J., Koochi, A., Kazemi, A. S., and Abadyan, M. Modeling the effects of size dependence and dispersion forces on the pull-in instability of electrostatic cantilever NEMS using modified couple stress theory. Smart Materials and Structures, 20, 055011 (2011)

    Article  Google Scholar 

  26. Baghani, M. Analytical study on size-dependent static pull-in voltage of microcantilevers using the modified couple stress theory. International Journal of Engineering Science, 54, 99–105 (2012)

    Article  MathSciNet  Google Scholar 

  27. Zhang, J. and Fu, Y. Pull-in analysis of electrically actuated viscoelastic microbeams based on a modified couple stress theory, Meccanica, 47, 1649–1658 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  28. Wang, W., Huang, Y., Hsia, K. J., Hu, K. X., and Chandra, A. A study of microbend test by strain gradient plasticity. International Journal of Plasticity, 19, 365–382 (2003)

    Article  MATH  Google Scholar 

  29. Maranganti, R. and Sharma, P. A novel atomistic approach to determine strain-gradient elasticity constants: tabulation and comparison for various metals, semiconductors, silica, polymers and the (Ir) relevance for nanotechnologies. Journal of the Mechanics and Physics of Solids, 55, 1823–1852 (2007)

    Article  MATH  Google Scholar 

  30. Chen, C. Q., Shi, Y., Zhang, Y. S., Zhu, J., and Yan, Y. J. Size dependence of Young’s modulus in ZnO nanowires. Physical Review Letters, 96, 075505 (2006)

    Article  Google Scholar 

  31. Cuenot, S., Demoustier-Champagne, S., and Nysten, B. Elastic modulus of polypyrrolenanotubes. Physical Review Letters, 85, 1690–1693 (2000)

    Article  Google Scholar 

  32. Liang, S., Han, R. P. S., Wang, J., and Lim, C. T. Modeling the size-dependent elastic properties of polymeric nanofibers. Nanotechnology, 19, 455706 (2008)

    Article  Google Scholar 

  33. Timoshenko, S. Theory of Plates and Shells, McGraw-Hill, New York (1987)

    Google Scholar 

  34. Jackson, J. D. Classical Electrodynamics, Wiley, New York (1998)

    Google Scholar 

  35. Hayt, W. H. Engineering Electromagnetics, McGraw-Hill, New York (1981)

    Google Scholar 

  36. Lennard-Jones, J. E. Perturbation problems in quantum mechanics. Proceedings of the Royal Society of London. Series A, 129, 598–615 (1930)

    Article  MATH  Google Scholar 

  37. Girifalco, L. A., Hodak, M., and Lee, R. S. Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Physical Review B, 62, 13104–13110 (2000)

    Article  Google Scholar 

  38. Ke, C. H. and Espinosa, H. D. The Handbook of Theoretical and Computational Nanotechnology, American Scientific Publishers, Valencia (2006)

    Google Scholar 

  39. Israelachvili, J. N. Intermolecular and Surface Forces with Applications to Colloidal and Biological Systems, Academic Press, New York (1985)

    Google Scholar 

  40. Ramezani, A., Alasty, A., and Akbari, J. Influence of van derWaals force on the pull-in parameters of cantilever type nanoscale electrostatic actuators. International Journal of Solids and Structures, 44, 4925–4941 (2007)

    Article  MATH  Google Scholar 

  41. Alves, E., Ma, T. F., and Pelicer, M. L. Monotone positive solutions for a fourth order equation with nonlinear boundary conditions. Nonlinear Analysis, Theory, Methods and Applications, 71, 3834–3841 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  42. Baghani, M., Jafari-Talookolaei, R. A., and Salarieh, H. Large amplitudes free vibrations and postbuckling analysis of unsymmetrically laminated composite beams on nonlinear elastic foundation. Applied Mathematical Modelling, 35, 130–138 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  43. He, J. H. Variational iteration method-some recent results and new interpretations. Journal of Computational and Applied Mathematics, 207, 3–17 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  44. He, J. H. and Wu, X. H. Variational iteration method: new development and applications. Computers and Mathematics with Applications, 54, 881–894 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  45. Jafari, H., Saeidy, M., and Baleanu, D. The variational iteration method for solving nth-order fuzzy differential equations. Central European Journal of Physics, 10, 76–85 (2011)

    Article  Google Scholar 

  46. Jafari, H. and Alipoor, A. A new method for calculating general lagrange multiplier in the variational iteration method. Numerical Methods for Partial Differential Equations, 27, 996–1001 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  47. Chang, J., Min, B. K., Kim, J., Lee, S. L., and Lin, L. Electrostatically actuated carbon nanowire nanotweezers. Smart Materials and Structures, 18, 065017 (2009)

    Article  Google Scholar 

  48. Lin, W. H. and Zhao, Y. P. Dynamics behavior of nanoscale electrostatic actuators. Chinese Physics Letter, 20, 2070–2073 (2003)

    Article  Google Scholar 

  49. Ramezani, A., Alasty, A., and Akbari, J. Analytical investigation and numerical verification of Casimir effect on electrostatic nanocantilevers. Microsystem Technologies, 14, 145–157 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Abadyan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farrokhabadi, A., Koochi, A., Kazemi, A. et al. Effects of size-dependent elasticity on stability of nanotweezers. Appl. Math. Mech.-Engl. Ed. 35, 1573–1590 (2014). https://doi.org/10.1007/s10483-014-1880-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-014-1880-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation