Skip to main content
Log in

Surface energy and thermal stress effect on nonlinear vibration of electrostatically actuated circular micro-/nanoplates based on modified couple stress theory

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Electrostatically actuated circular micro-/nanoplates are commonly used in micro-/nanoswitches and pumps. This paper models the thermal and size effects on the nonlinear vibration behavior of electrostatically actuated circular micro-/nanoplates. Surface elasticity and modified couple stress theories are simultaneously applied to the modeling. A reduced-order model incorporating temperature change is derived and solved numerically. Results show that the material length scale, surface energy, negative temperature change, and geometry nonlinear strain increase frequency and pull-in voltage of the plate. However, Casimir force and positive temperature change reduce the frequency of the plate. Moreover, the effects of surface energy, material length scale and temperature change on frequency become more obvious for thinner plates. The influence of the geometrically nonlinear strain on the frequency is significant for large initial gap to thickness ratio of the plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pelesko, J.A., Bernstein, D.H.: Modeling MEMS and NEMS, Chap. 7. Chapman & Hall, Boca Raton (2002)

    Book  MATH  Google Scholar 

  2. Nguyen, C.T.C., Katehi, L.P.B., Rebeiz, G.M.: Micromachined devices for wireless communications. Proc. IEEE 86, 1756–1768 (1998)

    Article  Google Scholar 

  3. Gupta, R.K., Senturia, S.D.: Pull-in time dynamics as a measure of absolute pressure. In: Proceedings IEEE International Workshop on Microelectromechanical Systems (MEMS’97), Nagoya, Japan, pp. 290–294 (1997)

  4. Sheikhlou, M., Shabani, R., Rezazadeh, G.: Nonlinear analysis of electrostatically actuated diaphragm-type micropumps. Nonlinear Dyn. 83, 951–961 (2016)

  5. Howe, R.T., Muller, R.S.: Resonant-microbridge vapor sensor. IEEE Trans. Electron. Devices 33, 499–506 (1986)

    Article  Google Scholar 

  6. Ramezani, A., Alasty, A., Akbari, J.: Closed-form solutions of the pull-in instability in nano-cantilevers under electrostatic and intermolecular surface forces. Int. J. Solids Struct. 44, 4925–4941 (2007)

    Article  MATH  Google Scholar 

  7. Jia, X.L., Yang, J., Kitipornchai, S.: Pull-in instability of geometrically nonlinear micro-switches under electrostatic and Casimir forces. Acta Mech. 218, 161–174 (2011)

    Article  MATH  Google Scholar 

  8. Jia, X.L., Yang, J., Kitipornchai, S., Lim, C.M.: Free vibration of geometrically nonlinear micro-switches under electrostatic and Casimir forces. Smart Mater. Struct. 19, 115028 (2010)

    Article  Google Scholar 

  9. Batra, R.C., Porfiri, M., Spinello, D.: Reduced-order models for microelectromechanical rectangular and circular plates incorporating the Casimir force. Int. J. Solids Struct. 45, 3558–3583 (2008)

    Article  MATH  Google Scholar 

  10. Batra, R.C., Porfiri, M., Spinello, D.: Effect of van der Waals force and thermal stress on pull-in instability of microplates. Sensors 8, 1048–1069 (2008)

    Article  Google Scholar 

  11. Batra, R.C., Porfiri, M., Spinello, D.: Vibrations and pull-in instabilities of microelectromechanical von Kármán elliptic plates incorporating the Casimir force. J. Sound Vib. 315, 939–960 (2008)

    Article  MATH  Google Scholar 

  12. Wang, Y.G., Lin, W.H., Li, X.M., Feng, Z.J.: Bending and vibration of an electrostatically actuated circular microplate in presence of Casimir force. Appl. Math. Model. 35, 2348–2357 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fu, Y., Zhang, J.: Size-dependent pull-in phenomena in electrically actuated nanobeams incorporating surface energies. Appl. Math. Model. 35, 941–951 (2011)

    Article  MathSciNet  Google Scholar 

  15. Hosseini-Hashemi, S., Nahas, I., Fakher, M., Nazemnezhad, R.: Surface effects on the free vibration of piezoelectric functionally graded nanobeams using nonlocal elasticity. Acta Mech. 225, 1555–1564 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sahmani, S., Aghdam, M.M., Bahrami, M.: On the free vibration characteristics of postbuckled third-order shear deformable FGM nanobeams including surface effects. Compos. Struct. 121, 377–385 (2015)

    Article  Google Scholar 

  17. Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)

    Article  MATH  Google Scholar 

  18. Thai, H.T., Vo, T.P., Nguyen, T.K., Lee, J.: Size-dependent behavior of functionally graded sandwich microbeams based on the modified couple stress theory. Compos. Struct. 123, 337–349 (2015)

    Article  Google Scholar 

  19. Romanoff, J., Reddy, J.N.: Experimental validation of the modified couple stress Timoshenko beam theory for web-core sandwich panels. Compos. Struct. 111, 130–137 (2014)

    Article  Google Scholar 

  20. Farokhi, H., Ghayesh, M.H.: Nonlinear dynamical behaviour of geometrically imperfect microplates based on modified couple stress theory. Int. J. Mech. Sci. 90, 133–144 (2015)

    Article  Google Scholar 

  21. Gao, X.L., Mahmoud, F.F.: A new Bernoulli–Euler beam model incorporating microstructure and surface energy effects. Z. Angew. Math. Phys. 65, 393–404 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mahmoud, F.F., Eltaher, M.A., Alshorbagy, A.E., Meletis, E.: Static analysis of nanobeams including surface effects by nonlocal finite element. J. Mech. Sci. Technol. 26, 3555–3563 (2012)

    Article  Google Scholar 

  23. Shaat, M., Mahmoud, F.F., Gao, X.L., Faheem, A.F.: Size-dependent bending analysis of Kirchhoff nano-plates based on a modified couple-stress theory including surface effects. Int. J. Mech. Sci. 79, 31–37 (2014)

    Article  Google Scholar 

  24. Wang, K.F., Kitamura, T., Wang, B.: Nonlinear pull-in instability and free vibration of micro/nanoscale plates with surface energy-a modified couple stress theory model. Int. J. Mech. Sci. 99, 288–296 (2015)

    Article  Google Scholar 

  25. Zhu, Y., Espinosa, H.D.: Reliability of capacitive RFMEMS switches at high and low temperatures. Int. J. RF Microw. Comput. Aided Eng. 14, 317–328 (2004)

    Article  Google Scholar 

  26. Nakhaie, J.G.: Mathematical modeling and simulation of thermal effects in flexural microcantilever resonator dynamics. J. Vib. Control 12, 139–163 (2006)

    Article  Google Scholar 

  27. Zhu, Y., Espinosa, H.D.: Effect of temperature on capacitive RF MEMS switch performance—a coupled-field analysis. J. Micromech. Microeng. 14, 1270–1279 (2004)

    Article  Google Scholar 

  28. Nayfeh, A.H., Younis, M.I.: Modeling and simulations of thermoelastic damping in microplates. J. Micromech. Microeng. 14, 1711–1717 (2004)

    Article  Google Scholar 

  29. Mohammadi, V., Ansari, R., Faghih, S.M., Gholami, R., Sahmani, S.: Size-dependent dynamic pull-in instability of hydrostatically and electrostatically actuated circular microplates. Nonlinear Dyn. 73, 1515–1526 (2013)

    Article  MathSciNet  Google Scholar 

  30. Vogl, G.W., Nayfeh, A.H.: Primary resonance excitation of electrically actuated clamped circular plates. Nonlinear Dyn. 47, 181–192 (2007)

    Article  MATH  Google Scholar 

  31. Ru, C.Q.: Simple geometrical explanation of Gurtin–Murdoch model of surface elasticity with clarification of its related versions. Sci. China Phys. Mech. Astron. 53, 536–544 (2010)

    Article  Google Scholar 

  32. Bordag, M.: Casimir effect for a sphere and a cylinder in front of a plane and corrections to the proximity force theorem. Phys. Rev. D 73, 125018 (2006)

    Article  Google Scholar 

  33. Gies, H., Klingmuller, K.: Casimir effect for curved geometries: proximity-force-approximation validity limits. Phys. Rev. Lett. 96, 220401 (2006)

    Article  Google Scholar 

  34. Meirovitch, L.: Analytical Methods in Vibrations. Macmillan, New York (1967)

    MATH  Google Scholar 

  35. Wang, G.F., Feng, X.Q.: Effects of surface elasticity and residual surface tension on the natural frequency of microbeams. Appl. Phys. Lett. 90, 231904 (2007)

    Article  Google Scholar 

  36. Shenoy, V.B.: Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Phys. Rev. B 71, 094104 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Natural Science Foundation of Guangdong Province of China (project nos. 2016A030310367, 2016A030311006), Research Innovation Fund of Shenzhen City of China (project no. JCYJ20150805142729431, JCYJ20160427184645305), the National Natural Science Foundation of China (project nos. 1167020127, 11372086, 1160020094), and China Postdoctoral Science Foundation Funded Special Project (project no.2016T90275).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. F. Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K.F., Wang, B. & Zhang, C. Surface energy and thermal stress effect on nonlinear vibration of electrostatically actuated circular micro-/nanoplates based on modified couple stress theory. Acta Mech 228, 129–140 (2017). https://doi.org/10.1007/s00707-016-1701-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1701-7

Navigation