Skip to main content
Log in

Mesolevel Modeling of Failure in Composite Laminates: Constitutive, Kinematic and Algorithmic Aspects

  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

In this paper recent developments for mesolevel modeling of failure in composite laminates are reviewed. The complexity of failure processes in composite laminates presses the need for reliable computational tools that can predict strength and damage tolerance. In mesolevel modeling, where individual layers are modeled separately but individual fibers are not, different failure processes are distinguished such as delamination, fiber failure and matrix failure. This paper deals with the question how these different processes should be treated for efficient and realistic computational modeling of failure. The development that is central in this review is the use of the extended finite element method (XFEM) for matrix cracks. Much attention is also paid to algorithmic aspects of implicit analysis of complex failure mechanisms, particularly but not exclusively in relation to XFEM. Furthermore, the remaining limitations and challenges for mesolevel analysis of composite failure are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 29
Fig. 28
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44

Similar content being viewed by others

References

  1. Cox BN, Yang QD (2006) In quest of virtual tests for structural composites. Science 314(5802):1102–1107

    Article  Google Scholar 

  2. Reddy JN (2004) Mechanics of laminated composite plates and shells: theory and analysis, 2nd edn. CRC, Boca Raton

    MATH  Google Scholar 

  3. Williams KV, Vaziri R, Poursartip A (2003) A physically based continuum damage mechanics model for thin laminated composite structures. Int J Solids Struct 40(9):2267–2300

    Article  MATH  Google Scholar 

  4. González C, LLorca J (2006) Multiscale modeling of fracture in fiber-reinforced composites. Acta Mater 54(16):4171–4181

    Article  Google Scholar 

  5. González C, LLorca J (2007) Mechanical behavior of unidirectional fiber-reinforced polymers under transverse compression: microscopic mechanisms and modelling. Compos Sci Technol 67(13):2795–2806

    Article  Google Scholar 

  6. Totry E, González C, LLorca J (2008) Failure locus of fiber-reinforced composites under shear transverse compression and out-of-plane shear. Compos Sci Technol 68(3–4):829–839

    Article  Google Scholar 

  7. Hashin Z (1980) Failure criteria for unidirectional fiber composites. J Appl Mech 47(2):329–334

    Article  Google Scholar 

  8. Mayes JS, Hansen AC (2004) Composite laminate failure analysis using multicontinuum theory. Compos Sci Technol 64(3):379–394

    Article  Google Scholar 

  9. Renard J, Thionnet A (2006) Damage in composites: from physical mechanisms to modelling. Compos Sci Technol 66:642–646

    Article  Google Scholar 

  10. Kanouté P, Boso DP, Chaboche JL, Schrefler BA (2009) Multiscale methods for composites: a review. Arch Comput Methods Eng 16(1):31–75

    Article  MATH  Google Scholar 

  11. Trias D, Costa J, Fiedler B, Hobbiebrunken T, Hurtado JE (2006) A two-scale method for matrix cracking probability in fibre-reinforced composites based on a statistical representative volume element. Compos Sci Technol 66:1766–1777

    Article  Google Scholar 

  12. Drago A, Pindera M-J (2007) Micro-macromechanical analysis of heterogeneous materials: macroscopically homogeneous vs periodic microstructures. Compos Sci Technol 67(6):1243–1263

    Article  Google Scholar 

  13. Ernst G, Vogler M, Hühne C, Rolfes R (2010) Multiscale progressive failure analysis of textile composites. Compos Sci Technol 70(1):61–72

    Article  Google Scholar 

  14. LLorca J, González C, Molina-Aldareguía JM, Segurado J, Seltzer R, Sket F, Rodríguez R, Sádaba S, Muñoz R, Canal LP (2011) Multiscale modeling of composite materials: a roadmap towards virtual testing. Adv Mater 23(44):5130–5147

    Article  Google Scholar 

  15. Gitman IM, Askes H, Sluys LJ (2007) Representative volume: Existence and size determination. Eng Fract Mech 74(16):2518–2534

    Article  Google Scholar 

  16. Nguyen VP, Stroeven M, Sluys LJ (2012) Multiscale failure modeling of concrete: micromechanical modeling, discontinuous homogenization and parallel computations. Comput Methods Appl Mech Eng 201–204(1):139–156

    Article  MathSciNet  Google Scholar 

  17. Hughes TJR (1987) The finite element method: linear static and dynamic finite element analysis. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  18. Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, Chichester

    MATH  Google Scholar 

  19. Hill R (1950) The mathematical theory of plasticity. Oxford University Press, London

    MATH  Google Scholar 

  20. Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, New York

    MATH  Google Scholar 

  21. Lemaitre J, Chaboche JL (1990) Mechanics of solid materials. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  22. Bažant ZP, Oh B (1983) Crack band theory for fracture of concrete. Mater Struct 16(3):155–177

    Google Scholar 

  23. Bažant ZP, Pijaudier-Cabot G (1989) Measurement of characteristic length of non-local continuum. J Eng Mech 115(4):755–767

    Article  Google Scholar 

  24. de Borst R, Mühlhaus H-B (1992) Gradient-dependent plasticity: formulation and algorithmic aspects. Int J Numer Methods Eng 35(3):521–539

    Article  MATH  Google Scholar 

  25. Peerlings RHJ, de Borst R, Brekelmans WAM, Geers MGD (1998) Gradient-enhanced damage modelling of concrete fracture. Mech Cohes-Frict Mater 3(4):323–342

    Article  Google Scholar 

  26. Peerlings RHJ, Geers MGD, de Borst R, Brekelmans WAM (2001) A critical comparison of nonlocal and gradient-enhanced softening continua. Int J Solids Struct 38(44):7723–7746

    Article  MATH  Google Scholar 

  27. Wang WM, Sluys LJ, de Borst R (1997) Viscoplasticity for instabilities due to strain softening and strain-rate softening. Int J Numer Methods Eng 40(20):3839–3864

    Article  MATH  Google Scholar 

  28. Barenblatt IG (1962) The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech 7:55–129

    Article  MathSciNet  Google Scholar 

  29. Ngo D, Scordelis AC (1967) Finite element analysis of reinforced concrete beams. ACI J Proc 64(3):152–163

    Google Scholar 

  30. Xie D, Waas AM (2006) Discrete cohesive zone model for mixed-mode fracture using finite element analysis. Eng Fract Mech 73(13):1783–1796

    Article  Google Scholar 

  31. Goodman RE, Taylor RL, Brekke TL (1968) A model for the mechanics of jointed rock. J Soil Mech Found Div 94:637–659

    Google Scholar 

  32. Schellekens JCJ, de Borst R (1994) Free edge delamination in carbon-epoxy laminates: a novel numerical/experimental approach. Compos Struct 28(4):357–373

    Article  Google Scholar 

  33. Schellekens JCJ, de Borst R (1993) On the numerical integration of interface elements. Int J Numer Methods Eng 36(1):43–66

    Article  MATH  Google Scholar 

  34. Rots JG (1988) Computational modeling of concrete fracture. PhD thesis, Delft University of Technology

  35. Melenk JM, Babuška I (1996) The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 139(1–4):289–314

    Article  MATH  Google Scholar 

  36. Moës N, Belytschko T (2002) Extended finite element method for cohesive crack growth. Eng Fract Mech 69(7):813–833

    Article  Google Scholar 

  37. Strouboulis T, Babuška I, Copps K (2000) The design and analysis of the generalized finite element method. Comput Methods Appl Mech Eng 181(1):43–69

    Article  MATH  Google Scholar 

  38. Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45(5):601–620

    Article  MathSciNet  MATH  Google Scholar 

  39. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):131–150

    Article  MATH  Google Scholar 

  40. Wells GN, Sluys LJ (2001) A new method for modelling cohesive cracks using finite elements. Int J Numer Methods Eng 50(12):2667–2682

    Article  MATH  Google Scholar 

  41. Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput Methods Appl Mech Eng 193(33–35):3523–3540

    Article  MathSciNet  MATH  Google Scholar 

  42. Mergheim J, Kuhl E, Steinmann P (2005) A finite element method for the computational modelling of cohesive cracks. Int J Numer Methods Eng 63(2):276–289

    Article  MATH  Google Scholar 

  43. Song J-H, Areias PMA, Belytschko T (2006) A method for dynamic crack and shear band propagation with phantom nodes. Int J Numer Methods Eng 67(6):868–893

    Article  MATH  Google Scholar 

  44. Broberg KB (1999) Cracks and fracture. Academic Press, San Diego

    Google Scholar 

  45. Bažant ZP, Planas J (1998) Fracture and size effect in concrete and other quasibrittle materials. CRC Press, Boca Raton

    Google Scholar 

  46. Wisnom MR (1999) Size effects in the testing of fibre-composite materials. Compos Sci Technol 58(13):1937–1957

    Article  Google Scholar 

  47. Hyer MW (1998) Stress analysis of fiber-reinforced composite materials. McGraw-Hill, Boston

    Google Scholar 

  48. Tsai SW (1965) Strength characteristics of composite materials. NASA Contractor Report 224

  49. Hoffman O (1967) The brittle strength of orthotropic materials. J Compos Mater 1:200–206

    Article  Google Scholar 

  50. Tsai SW, Wu EM (1971) A general theory of strength for anisotropic materials. J Compos Mater 5(1):58–80

    Article  Google Scholar 

  51. Hashin Z, Rotem A (1973) A fatigue failure criterion for fiber reinforced materials. J Compos Mater 7:448–464

    Article  Google Scholar 

  52. Hinton MJ, Soden PD (1998) Predicting failure in composite laminates: the background to the exercise. Compos Sci Technol 58(7):1001–1010

    Article  Google Scholar 

  53. Soden PD, Kaddour AS, Hinton MJ (2004) Recommendations for designers and researchers resulting from the world-wide failure exercise. Compos Sci Technol 64(3–4):589–604

    Article  Google Scholar 

  54. Liu KS, Tsai SW (1998) A progressive quadratic failure criterion for a laminate. Compos Sci Technol 58(7):1023–1032

    Article  Google Scholar 

  55. Harlow DG, Phoenix SL (1978) The chain-of-bundles probability model for the strength of fibrous materials I: analysis and conjectures. J Compos Mater 12(2):195–214

    Article  Google Scholar 

  56. Okabe T, Takeda N (2002) Size effect on tensile strength of unidirectional CFRP composites—experiments and simulation. Compos Sci Technol 62(15):2053–2064

    Article  Google Scholar 

  57. Koyanagi J, Hatta H, Kotani M, Kawada H (2009) A comprehensive model for determining tensile strength of various unidirectional composites. J Compos Mater 43(18):1901–1914

    Article  Google Scholar 

  58. Hallett SR, Green BG, Jiang W-G, Wisnom MR (2009) An experimental and numerical investigation into the damage mechanisms in notched composites. Composites, Part A, Appl Sci Manuf 40(5):613–624

    Article  Google Scholar 

  59. Li X, Hallett SR, Wisnom MR (2009) Numerical simulation of damage propagation in overheight compact tension tests. In: Proceedings of international conference on composite materials (ICCM-17), Edinburgh

    Google Scholar 

  60. Parvizi A, Garrett KW, Bailey JE (1978) Constrained cracking in glass fibre-reinforced epoxy cross-ply laminates. J Mater Sci 13(1):195–201

    Article  Google Scholar 

  61. Nairn JA (2000) Matrix microcracking in composites. In: Talreja R, Månson J-AE (eds) Polymer matrix composites. Comprehensive composite materials, vol 2. Elsevier, Amsterdam, pp 403–432. Chap 13

    Google Scholar 

  62. Camanho PP, Dávila CG, Pinho ST, Iannucci L, Robinson P (2006) Prediction of in situ strengths and matrix cracking in composites under transverse tension and in-plane shear. Composites, Part A, Appl Sci Manuf 37(2):165–176

    Article  Google Scholar 

  63. Talreja R (1985) Transverse cracking and stiffness reduction in composite laminates. J Compos Mater 19(4):355–375

    Article  Google Scholar 

  64. Dávila CG, Camanho PP, Rose CA (2005) Failure criteria for FRP laminates. J Compos Mater 39(4):323–345

    Article  Google Scholar 

  65. Pinho ST, Dávila CG, Camanho PP, Iannucci L, Robinson P (2005) Failure models and criteria for FRP under in-plane or three-dimensional stress states including shear non-linearity. NASA Technical Memorandum 213530

  66. Puck A, Schürmann H (1998) Failure analysis of FRP laminates by means of physically based phenomenological models. Compos Sci Technol 58(7):1045–1067

    Article  Google Scholar 

  67. Reddy JN, Pandey AK (1987) A first-ply failure analysis of composite laminates. Comput Struct 25(3):371–393

    Article  MATH  Google Scholar 

  68. Rybicki EF, Kanninen MF (1977) A finite element calculation of stress intensity factors by a modified crack closure integral. Eng Fract Mech 9(4):931–938

    Article  Google Scholar 

  69. Krueger R (2004) Virtual crack closure technique: history, approach, and applications. Appl Mech Rev 57(2):109–143

    Article  MathSciNet  Google Scholar 

  70. Allix O, Ladevèze P (1992) Interlaminar interface modelling for the prediction of delamination. Compos Struct 22(4):235–242

    Article  Google Scholar 

  71. Maimí P, Mayugo JA, Camanho PP (2008) A three-dimensional damage model for transversely isotropic composite laminates. J Compos Mater 42(25):2717–2745

    Article  Google Scholar 

  72. Wells GN, de Borst R, Sluys LJ (2002) A consistent geometrically non-linear approach for delamination. Int J Numer Methods Eng 54(9):1333–1355

    Article  MATH  Google Scholar 

  73. Remmers JJC, Wells GN, de Borst R (2003) A solid-like shell element allowing for arbitrary delaminations. Int J Numer Methods Eng 58(13):2013–2040

    Article  MATH  Google Scholar 

  74. Hashagen F, de Borst R (2000) Numerical assessment of delamination in fibre metal laminates. Comput Methods Appl Mech Eng 185(2):141–159

    Article  MATH  Google Scholar 

  75. Mi Y, Crisfield A, Hellweg H-B, Davies GAO (1998) Progressive delamination using interface elements. J Compos Mater 32(14):1246–1272

    Article  Google Scholar 

  76. Hibbs MF, Bradley WL (1987) Correlations between micromechanical failure processes and the delamination toughness of graphite/epoxy systems. In: Fractography of modern engineering materials: composites and metals (A88-16961 05-23). ASTM, Philadelphia, pp 68–97

    Chapter  Google Scholar 

  77. Evans AG, Rühle M, Dalgleish BJ, Charalambides PG (1990) The fracture energy of bimaterial interfaces. Mater Sci Eng A 126(1–2):53–64

    Google Scholar 

  78. Tay TE (2003) Characterization and analysis of delamination fracture in composites: an overview of developments from 1990 to 2001. Appl Mech Rev 56(1):1–32

    Article  Google Scholar 

  79. Camanho PP, Dávila CG, de Moura MF (2003) Numerical simulation of mixed-mode progressive delamination in composite materials. J Compos Mater 37(16):1415–1438

    Article  Google Scholar 

  80. Benzeggagh ML, Kenane M (1996) Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed mode bending apparatus. Compos Sci Technol 56(4):439–449

    Article  Google Scholar 

  81. Turon A, Camanho PP, Costa J, Dávila CG (2006) A damage model for the simulation of delamination in advanced composites under variable-mode loading. Mech Mater 38(11):1072–1089

    Article  Google Scholar 

  82. Allix O, Corigliano A (1996) Modeling and simulation of crack propagation in mixed-modes interlaminar fracture specimens. Int J Fract 77(2)

  83. Yang QD, Cox BN (2005) Cohesive models for damage evolution in laminated composites. Int J Fract 133(2):107–137

    Article  MATH  Google Scholar 

  84. Högberg JL (2006) Mixed mode cohesive law. Int J Fract 141(3–4):549–559

    Article  MATH  Google Scholar 

  85. Jiang W-G, Hallett SR, Green BG, Wisnom MR (2007) A concise interface constitutive law for analysis of delamination and splitting in composite materials and its application to scaled notched tensile specimens. Int J Numer Methods Eng 69(9):1982–1995

    Article  MATH  Google Scholar 

  86. van der Meer FP, Sluys LJ (2010) Mesh-independent modeling of both distributed and discrete matrix cracking in interaction with delamination. Eng Fract Mech 77(4):719–735

    Article  Google Scholar 

  87. Turon A, Camanho PP, Costa J, Renart J (2010) Accurate simulation of delamination growth under mixed-mode loading using cohesive elements: definition of interlaminar strengths and elastic stiffness. Compos Struct 92(8):1857–1864

    Article  Google Scholar 

  88. van der Meer FP, Sluys LJ (2009) A phantom node formulation with mixed mode cohesive law for splitting in laminates. Int J Fract 158(2):107–124

    Article  MathSciNet  MATH  Google Scholar 

  89. Goutianos S, Sørensen BF (2011) Work or separation of truss-like mixed mode cohesive laws. In: Lee W-I, et al. (eds) Proceedings of 18th international conference on composite materials, Jeju, Korea, Aug 2011

    Google Scholar 

  90. Li X, Hallett SR, Wisnom MR (2008) Predicting the effect of through-thickness compressive stress on delamination using interface elements. Composites, Part A, Appl Sci Manuf 39(2):218–230

    Article  Google Scholar 

  91. Wisnom MR (1992) On the increase in fracture energy with thickness in delamination of unidirectional glass fibre-epoxy with cut central plies. J Reinf Plast Compos 11(8):897–909

    Article  Google Scholar 

  92. Allix O, Lévêque D, Perret L (1998) Identification and forecast of delamination in composite laminates by an interlaminar interface model. Compos Sci Technol 58(5):671–678

    Article  Google Scholar 

  93. Andersons J, König M (2004) Dependence of fracture toughness of composite laminates on interface ply orientations and delamination growth direction. Compos Sci Technol 64(13–14):2139–2152

    Article  Google Scholar 

  94. Greenhalgh ES, Rogers C, Robinson P (2009) Fractographic observations on delamination growth and the subsequent migration through the laminate. Compos Sci Technol 69(14):2345–2351

    Article  Google Scholar 

  95. Davidson BD, Gharibian SJ, Yu L (2000) Evaluation of energy release rate-based approaches for predicting delamination growth in laminated composites. Int J Fract 105(4):343–365

    Article  Google Scholar 

  96. Ladevèze P, Lubineau G (2002) An enhanced mesomodel for laminates based on micromechanics. Compos Sci Technol 62:533–541

    Article  Google Scholar 

  97. Harper PW, Hallett SR (2008) Cohesive zone length in numerical simulations of composite delamination. Eng Fract Mech 75(16):4774–4792

    Article  Google Scholar 

  98. Turon A, Costa J, Camanho PP, Maimí P (2008) Analytical and numerical investigation of the length of the cohesive zone in delaminated composite materials. In: Camanho PP, Pinho ST, Dávila CG, Remmers JJC (eds) Mechanical response of composites, computational methods in applied sciences. Springer, Berlin, pp 77–97. Chap 4

    Google Scholar 

  99. Turon A, Dávila CG, Camanho PP, Costa J (2007) An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Eng Fract Mech 74(10):1665–1682

    Article  Google Scholar 

  100. Harper PW, Sun L, Hallett SR (2012) A study on the influence of cohesive zone interface element strength parameters on mixed mode behavior. Composites, Part A, Appl Sci Manuf 43(4):722–734

    Article  Google Scholar 

  101. Yang QD, Fang XJ, Shi JX, Lua J (2010) An improved cohesive element for shell delamination analyses. Int J Numer Methods Eng 83(5):611–641

    MATH  Google Scholar 

  102. Crisfield MA, Alfano G (2002) Adaptive hierarchical enrichment for delamination fracture using a decohesive zone model. Int J Numer Methods Eng 54(9):1369–1390

    Article  MATH  Google Scholar 

  103. Guiamatsia I, Ankersen JK, Davies GAO, Iannucci L (2009) Decohesion finite element with enriched basis functions for delamination. Compos Sci Technol 69(15–16):2616–2624

    Article  Google Scholar 

  104. Samimi M, Van Dommelen JAW, Geers MGD (2009) An enriched cohesive zone model for delamination in brittle interfaces. Int J Numer Methods Eng 80(5):609–630

    Article  MATH  Google Scholar 

  105. Samimi M, Van Dommelen JAW, Geers MGD (2011) A three-dimensional self-adaptive cohesive zone model for interfacial delamination. Comput Methods Appl Mech Eng 200(49–52):3540–3553

    Article  MATH  Google Scholar 

  106. van der Meer FP, Moës N, Sluys LJ (2012) A level set model for delamination—modeling crack growth without cohesive zone or stress singularity. Eng Fract Mech 79:191–212

    Article  Google Scholar 

  107. Laš V, Zemčik R (2008) Progressive damage of unidirectional composite panels. J Compos Mater 42(1):25–44

    Google Scholar 

  108. Liu CJ, Nijhof AHJ, Ernst LJ, Marissen R (2008) Modeling failure interaction in notched cross-ply laminates. J Compos Mater 42(20):2175–2193

    Article  Google Scholar 

  109. Vaziri R, Olson MD, Anderson DL (1992) Finite element analysis of fibrous composite structures: a plasticity approach. Comput Struct 44(1):103–116

    Article  MATH  Google Scholar 

  110. Li X, Duxbury PG, Lyons P (1994) Considerations for the application and numerical implementation of strain hardening with the Hoffman yield criterion. Comput Struct 52(4):633–644

    Article  MATH  Google Scholar 

  111. Lourenço PB, de Borst R, Rots JG (1997) A plane stress softening plasticity model for orthotropic materials. Int J Numer Methods Eng 40(21):4033–4057

    Article  MATH  Google Scholar 

  112. Hashagen F, de Borst R (2001) Enhancement of the Hoffman yield criterion with an anisotropic hardening model. Comput Struct 79(6):637–651

    Article  Google Scholar 

  113. Ladevèze P, Le Dantec E (1992) Damage modelling of the elementary ply for laminated composites. Compos Sci Technol 43(3):257–267

    Article  Google Scholar 

  114. Matzenmiller A, Lubliner J, Taylor RL (1995) A constitutive model for anisotropic damage in fiber-composites. Mech Mater 20(2):125–152

    Article  Google Scholar 

  115. Pinho ST, Robinson P, Iannucci L (2006) Physically based failure models and criteria for laminated fibre-reinforced composites with emphasis on fibre kinking. Part I: Development. Composites, Part A, Appl Sci Manuf 37(1):63–73

    Article  Google Scholar 

  116. Pinho ST, Robinson P, Iannucci L (2006) Physically based failure models and criteria for laminated fibre-reinforced composites with emphasis on fibre kinking. Part II: FE implementation. Composites, Part A, Appl Sci Manuf 37(5):766–777

    Article  Google Scholar 

  117. Maimí P, Camanho PP, Mayugo JA, Dávila CG (2007) A continuum damage model for composite laminates: Part I—constitutive model. Mech Mater 39(10):897–908

    Article  Google Scholar 

  118. Maimí P, Camanho PP, Mayugo JA, Dávila CG (2007) A continuum damage model for composite laminates: Part II—computational implementation and validation. Mech Mater 39(10):909–919

    Article  Google Scholar 

  119. Laurin F, Carrère N, Maire J-F (2007) A multiscale progressive failure approach for composite laminates based on thermodynamical viscoelastic and damage models. Composites, Part A, Appl Sci Manuf 38(1):198–209

    Article  Google Scholar 

  120. Lapczyk I, Hurtado JA (2007) Progressive damage modeling in fiber-reinforced materials. Composites, Part A, Appl Sci Manuf 38(11):2333–2341

    Article  Google Scholar 

  121. Camanho PP, Maimí P, Dávila CG (2007) Prediction of size effects in notched laminates using continuum damage mechanics. Compos Sci Technol 67(13):2715–2727

    Article  Google Scholar 

  122. Germain N, Besson J, Feyel F (2007) Composite layered materials: anisotropic nonlocal damage models. Comput Methods Appl Mech Eng 196(41–44):4272–4282

    Article  MATH  Google Scholar 

  123. Chamis CC, Sinclair JH (1977) Ten-deg off-axis test for shear properties in fiber composites. Exp Mech 17(9):339–346

    Article  Google Scholar 

  124. Van Paepegem W, De Baere I, Degrieck J (2006) Modelling the nonlinear shear stress–strain response of glass fibre-reinforced composites. Part I: experimental results. Compos Sci Technol 66(10):1455–1464

    Article  Google Scholar 

  125. van der Meer FP, Sluys LJ (2009) Continuum models for the analysis of progressive failure in composite laminates. J Compos Mater 43(20):2131–2156

    Article  Google Scholar 

  126. Camanho PP, Fink A, Obst A, Pimenta S (2009) Hybrid titanium-CFRP laminates for high-performance bolted joints. Composites, Part A, Appl Sci Manuf 40(12):1826–1837

    Article  Google Scholar 

  127. Blom AW, Lopes CS, Kromwijk PJ, Gürdal Z, Camanho PP (2009) A theoretical model to study the influence of tow-drop areas on the stiffness and strength of variable-stiffness laminates. J Compos Mater 43(5):403–425

    Article  Google Scholar 

  128. Abisset E, Daghia F, Ladevèze P (2011) On the validation of a damage mesomodel for laminated composites by means of open-hole tensile tests on quasi-isotropic laminates. Composites, Part A, Appl Sci Manuf 42(10):1515–1524

    Article  Google Scholar 

  129. Wisnom MR, Chang F-K (2000) Modelling of splitting and delamination in notched cross-ply laminates. Compos Sci Technol 60(15):2849–2856

    Article  Google Scholar 

  130. de Moura MFSF, Gonçalves JPM (2004) Modelling the interaction between matrix cracking and delamination in carbon-epoxy laminates under low velocity impact. Compos Sci Technol 64(7):1021–1027

    Article  Google Scholar 

  131. Hallett SR, Wisnom MR (2006) Numerical investigation of progressive damage and the effect of layup in notched tensile tests. J Compos Mater 40(14):1229–1245

    Article  Google Scholar 

  132. Hallett SR, Jiang W-G, Khan B, Wisnom MR (2008) Modelling the interaction between matrix cracks and delamination damage in scaled quasi-isotropic specimens. Compos Sci Technol 68(1):80–89

    Article  Google Scholar 

  133. Iarve EV (2003) Mesh independent modelling of cracks by using higher order shape functions. Int J Numer Methods Eng 56(6):869–882

    Article  MATH  Google Scholar 

  134. Mollenhauer D, Iarve EV, Kim R, Langley B (2006) Examination of ply cracking in composite laminates with open holes: a moiré interferometric and numerical study. Composites, Part A, Appl Sci Manuf 37(2):282–294

    Article  Google Scholar 

  135. Iarve EV, Gurvich MR, Mollenhauer DH, Rose CA, Dávila CG (2011) Mesh-indepedent matrix cracking and delamination modeling in laminated composites. Int J Numer Methods Eng 88(8):749–773

    Article  MATH  Google Scholar 

  136. Mollenhauer D, Ward L, Iarve E, Putthanarat S, Hoos K, Hallett S, Li X (2012) Simulation of discrete damage in composite overheight compact tension specimens. Compos part A

  137. Ling D, Yang QD, Cox BN (2009) An augmented finite element method for modeling arbitrary discontinuities in composite materials. Int J Fract 156(1):53–73

    Article  Google Scholar 

  138. Zhou ZQ, Fang XJ, Cox BN, Yang QD (2010) The evolution of a transverse intra-ply crack coupled to delamination cracks. Int J Fract 165(1):77–92

    Article  Google Scholar 

  139. Fang XJ, Zhou ZQ, Cox BN, Yang QD (2011) High-fidelity simulations of multiple fracture processes in a laminated composite in tension. J Mech Phys Solids 59(7):1355–1373

    Article  Google Scholar 

  140. van der Meer FP, Oliver C, Sluys LJ (2010) Computational analysis of progressive failure in a notched laminate including shear nonlinearity and fiber failure. Compos Sci Technol 70(4):692–700

    Article  Google Scholar 

  141. van der Meer FP, Sluys LJ, Hallett SR, Wisnom MR (2012) Computational modeling of complex failure mechanisms in laminates. J Compos Mater (in press)

  142. Crossman FW, Wang ASD (1982) The dependence of transverse cracking and delamination on ply thickness in graphite/epoxy laminates. In: Reifsnider KL (ed) Damage in composite materials. ASTM International, West Conshohocken, pp 118–139

    Google Scholar 

  143. Johnson P, Chang F-K (2001) Characterization of matrix crack-induced laminate failure—Part I: experiments. J Compos Mater 35(22):2009–2035

    Google Scholar 

  144. Li X, Hallett SR, Wisnom MR, Zobeiry N, Vaziri R, Poursartip A (2009) Experimental study of damage propagation in over-height compact tension tests. Composites, Part A, Appl Sci Manuf 40(12):1891–1899

    Article  Google Scholar 

  145. Hallett SR, Wisnom MR (2006) Experimental investigation of progressive damage and the effect of layup in notched tensile tests. J Compos Mater 40(2):119–141

    Article  Google Scholar 

  146. Spearing SM, Beaumont PWR (1992) Fatigue damage mechanics of composite materials. I: experimental measurement of damage and post-fatigue properties. Compos Sci Technol 44(2):159–168

    Article  Google Scholar 

  147. Green BG, Wisnom MR, Hallett SR (2007) An experimental investigation into the tensile strength scaling of notched composites. Composites, Part A, Appl Sci Manuf 38(3):867–878

    Article  Google Scholar 

  148. Jäger P, Steinmann P, Kuhl E (2008) Modeling three-dimensional crack propagation—a comparison of crack path tracking strategies. Int J Numer Methods Eng 76(9):1328–1352

    Article  MATH  Google Scholar 

  149. Rabczuk T, Zi G, Gerstenberger A, Wall WA (2008) A new crack tip element for the phantom node method with arbitrary cohesive cracks. Int J Numer Methods Eng 75(5):577–599

    Article  MATH  Google Scholar 

  150. Cox JV (2009) An extended finite element method with analytical enrichment for cohesive crack modeling. Int J Numer Methods Eng 78(1):48–83

    Article  MATH  Google Scholar 

  151. Oliver J (2000) On the discrete constitutive models induced by strong discontinuity kinematics and continuum constitutive equations. Int J Solids Struct 37(48–50):7207–7229

    Article  MathSciNet  MATH  Google Scholar 

  152. Mergheim J, Steinmann P (2006) A geometrically nonlinear FE approach for the simulation of strong and weak discontinuities. Comput Methods Appl Mech Eng 195(37–40):5037–5052

    Article  MathSciNet  MATH  Google Scholar 

  153. Moonen P, Sluys LJ, Carmeliet J (2008) A continuous-discontinuous approach to simulate fracture processes in quasi-brittle materials. Philos Mag 88(28):3281–3298

    Article  Google Scholar 

  154. Hille TS, Suiker ASJ, Turteltaub S (2009) Microcrack nucleation in thermal barrier coating systems. Eng Fract Mech 76(6):813–825

    Article  Google Scholar 

  155. Geuzaine C, Remacle J-F (2009) Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int J Numer Methods Eng 79(11):1309–1331

    Article  MathSciNet  MATH  Google Scholar 

  156. Pinho ST, Robinson P, Iannucci L (2006) Fracture toughness of the tensile and compressive fibre failure modes in laminated composites. Compos Sci Technol 66(13):2069–2079

    Article  Google Scholar 

  157. Dávila CG, Rose CA, Camanho PP (2009) A procedure for superposing linear cohesive laws to represent multiple damage mechanisms in the fracture of composites. Int J Fract 158(2):211–223

    Article  MATH  Google Scholar 

  158. Van Paepegem W, Baere ID, Degrieck J (2006) Modelling the nonlinear shear stress–strain response of glass fibre-reinforced composites. Part II: model development and finite element simulations. Compos Sci Technol 66(10):1465–1478

    Article  Google Scholar 

  159. Gutiérrez MA (2004) Energy release control for numerical simulations of failure in quasi-brittle solids. Commun Numer Methods Eng 20(1):19–29

    Article  MATH  Google Scholar 

  160. Riks E (1979) An incremental approach to the solution of snapping and buckling problems. Int J Solids Struct 15(7):529–551

    Article  MathSciNet  MATH  Google Scholar 

  161. de Borst R (1987) Computation of post-bifurcation and post-failure behavior of strain-softening solids. Comput Struct 25(2):211–224

    Article  MATH  Google Scholar 

  162. Verhoosel CV, Remmers JJC, Gutiérrez MA (2009) A dissipation-based arc-length method for robust simulation of brittle and ductile failure. Int J Numer Methods Eng 77(9):1290–1321

    Article  MATH  Google Scholar 

  163. Lafarie-Frenot MC, Touchard F (1994) Comparative in-plane shear behaviour of long-carbon-fibre composites with thermoset or thermoplastic matrix. Compos Sci Technol 52(3):417–425

    Article  Google Scholar 

  164. Wisnom MR, Khan B, Hallett SR (2008) Size effects in unnotched tensile strength of unidirectional and quasi-isotropic carbon/epoxy composites. Compos Struct 84(1):21–28

    Article  Google Scholar 

  165. Chen B, Tay TE, Baiz PM, Pinho ST (2011) Size effects in progressive damage of notched and holed composites. In: Lee W-I, et al. (eds) Proceedings of 18th international conference on composite materials, Jeju, Korea Aug 2011

    Google Scholar 

  166. Laffan MJ, Pinho ST, Robinson P, Iannucci L (2010) Measurement of the in situ ply fracture toughness associated with mode I fibre tensile failure in FRP. Part II: size and lay-up effects. Compos Sci Technol 70(4):614–621

    Article  Google Scholar 

  167. Kongshavn I, Poursartip A (1999) Experimental investigation of a strain-softening approach to predicting failure in notched fibre-reinforced composite laminates. Compos Sci Technol 59(1):29–40

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from the Technology Foundation STW (under grant 06623) and the Ministry of Public Works and Water Management, The Netherlands, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frans P. van der Meer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Meer, F.P. Mesolevel Modeling of Failure in Composite Laminates: Constitutive, Kinematic and Algorithmic Aspects. Arch Computat Methods Eng 19, 381–425 (2012). https://doi.org/10.1007/s11831-012-9076-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-012-9076-y

Keywords

Navigation