Skip to main content
Log in

A procedure for superposing linear cohesive laws to represent multiple damage mechanisms in the fracture of composites

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The relationships between a resistance curve (R-curve), the corresponding fracture process zone length, the shape of the traction-displacement softening law, and the propagation of fracture are examined in the context of the through-the-thickness fracture of composite laminates. A procedure for superposing linear cohesive laws to approximate an experimentally-determined R-curve is proposed. Simple equations are developed for determining the separation of the critical energy release rates and the strengths that define the independent contributions of each linear softening law in the superposition. The proposed procedure is demonstrated for the longitudinal fracture of a fiber-reinforced polymer-matrix composite. It is shown that the R-curve measured with a Compact Tension Specimen test cannot be predicted using a linear softening law, but can be reproduced by superposing two linear softening laws.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abaqus 6.8 User’s Manual (2008) Dassault Systèmes, Providence, RI, USA

  • ACI_Committee_224 (1992) Control of cracking in concrete structures ACI 224R-01. American Concrete Institute, Farmington Hills, MI

  • ASTM_D5528-01 (2002) Standard test method for mode I interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites. In: Annual book of ASTM standards American society for testing and materials, West Conshohocken, PA

  • Bao G, Suo Z (1992) Remarks on crack-bridging concepts. Appl Mech Rev 45: 355–366

    Article  Google Scholar 

  • Barenblatt GI (1962) Mathematical theory of equilibrium cracks in brittle failure. Adv Appl Mech 7: 55–129. doi:10.1016/S0065-2156(08)70121-2

    Article  MathSciNet  Google Scholar 

  • Bažant ZP (2002) Concrete fracture models: testing and practice. Eng Fract Mech 69: 165–205. doi:10.1016/S0013-7944(01)00084-4

    Article  Google Scholar 

  • Camanho PP, Dávila CG, de Moura MFSF (2003) Numerical simulation of mixed-mode progressive delamination in composite materials. J Compos Mater 37: 1415–1438. doi:10.1177/0021998303034505

    Article  Google Scholar 

  • Camanho PP, Maimí P, Dávila CG (2007) Prediction of size effects in notched laminates using continuum damage mechanics. Compos Sci Technol 67: 2715–2727. doi:10.1016/j.compscitech.2007.02.005

    Article  CAS  Google Scholar 

  • Cox BN, Marshall DB (1994) Concepts for bridged cracks in fracture and fatigue. Acta Metall Mater 42: 341–363. doi:10.1016/0956-7151(94)90492-8

    Article  Google Scholar 

  • Dopker B, Murphy DP, Ilcewicz LB, Walker T (1994) Damage tolerance analysis of composite transport fuselage structure. In: 35th AIAA/ASME/ASCE/AHS structures, structural dynamics and materials conference, Hilton Head, SC

  • Dugdale D (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8: 100–104. doi:10.1016/0022-5096(60)90013-2

    Article  ADS  Google Scholar 

  • Foote RML, Mai Y-W, Cotterell B (1986) Crack growth resistance curves in strain-softening materials. J Mech Phys Solids 34: 593–607. doi:10.1016/0022-5096(86)90039-6

    Article  ADS  Google Scholar 

  • Hillerborg A, Modéer M, Petersson PE (1976) Analysis of crack formation and crack growth in concrete by fracture mechanics and finite elements. Cem Concr Res 6: 773–782. doi:10.1016/0008-8846(76)90007-7

    Article  Google Scholar 

  • Irwin GR (1970) Fracture strength of relatively brittle structures and materials. J Franklin Inst 290: 513–521. doi:10.1016/0016-0032(70)90234-6

    Article  Google Scholar 

  • Jacobsen TK, Sørensen BF (2001) Mode I intra-laminar crack growth in composites—modelling of R-curves from measured bridging laws. Compos Part A Appl Sci Manuf 32: 1–11. doi:10.1016/S1359-835X(00)00139-1

    Article  Google Scholar 

  • Koerber H, Camanho PP (2008) Simulation of progressive damage in bolted composite joints. In: 13th European conference on composite materials, Stockholm, Sweden

  • Lapczyk I, Hurtado JA (2007) Progressive damage modeling in fiber-reinforced materials. Compos Part A Appl Sci Manuf 38: 2333–2341. doi:10.1016/j.compositesa.2007.01.017

    Article  Google Scholar 

  • Macon DJ, Anderson GL (2002) Kinetic energy corrections for slip-stick behavior in brittle adhesives. J Appl Polym Sci 86: 1821–1828. doi:10.1002/app.11090

    Article  CAS  Google Scholar 

  • Maimí P, Camanho PP, Mayugo JA, Dávila CG (2007a) A continuum damage model for composite laminates: part I—constitutive model. Mech Mater 39: 897–908. doi:10.1016/j.mechmat.2007.03.005

    Article  Google Scholar 

  • Maimí P, Camanho PP, Mayugo JA, Dávila CG (2007) A continuum damage model for composite laminates: part II—computational implementation. Mech Mater 39: 909–919. doi:10.1016/j.mechmat.2007.03.006

    Article  Google Scholar 

  • MIL-HDBK-17-3 (2005) Materials usage, design and analysis, Rev E. Department of Defense Single Stock Point (DODSSP), Philadelphia, PA

  • Pinho ST, Robinson P, Iannucci L (2006) Fracture toughness of the tensile and compressive fibre failure modes in laminated composites. Compos Sci Technol 66: 2069–2079. doi:10.1016/j.compscitech.2005.12.023

    Article  CAS  Google Scholar 

  • Rice JR (1979) The mechanics of earthquake rupture. In: Dziewonski AM, Boschi E (eds) Physics of the earth’s interior, proceedings of the international School of Physics ‘Enrico Fermi’. Italian Physical Society and North-Holland Publ Co., pp 555–649

  • Smith E (1989) The size of the fully developed softening zone associated with a crack in a strain-softening material—I. A semi-infinite crack in a remotely loaded infinite solid. Int J Eng Sci 27: 301–307. doi:10.1016/0020-7225(89)90118-3

    Google Scholar 

  • Sørensen BF, Jacobsen TK (1998) Large-scale bridging in composites: R-curves and bridging laws. Compos Part A Appl Sci Manuf 29: 1443–1451. doi:10.1016/S1359-835X(98)00025-6

    Article  Google Scholar 

  • Turon A, Camanho PP, Costa J, Dávila CG (2006) A damage model for the simulation of delamination in advanced composites under variable-mode loading. Mech Mater 38: 1072–1089. doi:10.1016/j.mechmat.2005.10.003

    Article  Google Scholar 

  • Turon A, Dávila CG, Camanho PP, Costa J (2007) An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Eng Fract Mech 74: 1665–1682. doi:10.1016/j.engfracmech.2006.08.025

    Article  Google Scholar 

  • Yang Q, Cox BN (2005) Cohesive models for damage evolution in laminated composites. Int J Fract 133: 107–137. doi:10.1007/s10704-005-4729-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos G. Dávila.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dávila, C.G., Rose, C.A. & Camanho, P.P. A procedure for superposing linear cohesive laws to represent multiple damage mechanisms in the fracture of composites. Int J Fract 158, 211–223 (2009). https://doi.org/10.1007/s10704-009-9366-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-009-9366-z

Keywords

Navigation