Afify A, Galizia CG (2015) Chemosensory cues for mosquito oviposition site selection. J Med Entomol 52:120–130. https://doi.org/10.1093/jme/tju024
CAS
Article
PubMed
Google Scholar
Ali JG, Campos-Herrera R, Alborn HT et al (2013) Sending mixed messages: a trophic cascade produced by a belowground herbivore-induced cue. J Chem Ecol 39:1140–1147. https://doi.org/10.1007/s10886-013-0332-x
CAS
Article
PubMed
Google Scholar
Aljbory Z, Chen M-S (2018) Indirect plant defense against insect herbivores: a review. Insect Sci 25:2–23. https://doi.org/10.1111/1744-7917.12436
CAS
Article
PubMed
Google Scholar
Alkan C, Bichaud L, De Lamballerie X et al (2013) Sandfly-borne phleboviruses of Eurasia and Africa: epidemiology, genetic diversity, geographic range, control measures. Antiviral Res 100:54–74. https://doi.org/10.1016/j.antiviral.2013.07.005
CAS
Article
PubMed
Google Scholar
Andersson MN, Löfstedt C, Newcomb RD (2015) Insect olfaction and the evolution of receptor tuning. Front Ecol Evol. https://doi.org/10.3389/fevo.2015.00053
Article
Google Scholar
Anfora G, Tasin M, De Cristofaro A et al (2009) Synthetic grape volatiles attract mated Lobesia botrana females in laboratory and field bioassays. J Chem Ecol 35:1054–1062. https://doi.org/10.1007/s10886-009-9686-5
CAS
Article
PubMed
Google Scholar
Arenas A, Farina WM (2012) Learned olfactory cues affect pollen-foraging preferences in honeybees, Apis mellifera. Anim Behav 83:1023–1033. https://doi.org/10.1016/j.anbehav.2012.01.026
Article
Google Scholar
Arif I, Batool M, Schenk PM (2020) Plant microbiome engineering: Expected benefits for improved crop growth and resilience. Trends Biotechnol. https://doi.org/10.1016/j.tibtech.2020.04.015
Article
PubMed
Google Scholar
Asmare Y, Hill SR, Hopkins RJ et al (2017) The role of grass volatiles on oviposition site selection by Anopheles arabiensis and Anopheles coluzzii. Malar J 16:65. https://doi.org/10.1186/s12936-017-1717-z
Article
PubMed
PubMed Central
Google Scholar
Asmare Y, Hopkins RJ, Tekie H et al (2017) Grass pollen affects survival and development of larval Anopheles arabiensis (Diptera: Culicidae). J Insect Sci 17:1–8. https://doi.org/10.1093/jisesa/iex067
CAS
Article
Google Scholar
Barredo E, DeGennaro M (2020) Not just from blood: Mosquito nutrient acquisition from nectar sources. Trends Parasitol 36:473–484. https://doi.org/10.1016/j.pt.2020.02.003
Article
PubMed
Google Scholar
Bastin-Héline L, de Fouchier A, Cao S et al (2019) A novel lineage of candidate pheromone receptors for sex communication in moths. Elife 8:1–17. https://doi.org/10.7554/eLife.49826
Article
Google Scholar
Becher PG, Hagman A, Verschut V et al (2018) Chemical signaling and insect attraction is a conserved trait in yeasts. Ecol Evol 8:2962–2974. https://doi.org/10.1002/ece3.3905
Article
PubMed
PubMed Central
Google Scholar
Beck JJ, Vannette RL (2017) Harnessing insect–microbe chemical communications to control insect pests of agricultural systems. J Agric Food Chem 65:23–28. https://doi.org/10.1021/acs.jafc.6b04298
CAS
Article
PubMed
Google Scholar
Bell K, Naranjo-Guevara N, dos Santos RC et al (2020) Predatory earwigs are attracted by herbivore-induced plant volatiles linked with plant growth-promoting rhizobacteria. Insects 11:271
Article
Google Scholar
Benton R, Vannice KS, Gomez-Diaz C, Vosshall LB (2009) Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila. Cell 136:149–162. https://doi.org/10.1016/j.cell.2008.12.001
CAS
Article
PubMed
PubMed Central
Google Scholar
Briegel H (1990) Fecundity, metabolism, and body size in Anopheles (Diptera: Culicidae), vectors of malaria. J Med Entomol 27:839–850. https://doi.org/10.1093/jmedent/27.5.839
CAS
Article
PubMed
Google Scholar
Bruce TJA, Aradottir GI, Smart LE et al (2015) The first crop plant genetically engineered to release an insect pheromone for defence. Sci Rep 5:1–9. https://doi.org/10.1038/srep11183
CAS
Article
Google Scholar
Butterwick JA, del Mármol J, Kim KH et al (2018) Cryo-EM structure of the insect olfactory receptor Orco. Nature 560:447–452. https://doi.org/10.1038/s41586-018-0420-8
CAS
Article
PubMed
PubMed Central
Google Scholar
Carey AF, Carlson JR (2011) Insect olfaction from model systems to disease control. Proc Natl Acad Sci 108:12987–12995. https://doi.org/10.1073/pnas.1103472108
Article
PubMed
Google Scholar
Carrasco D, Larsson MC, Anderson P (2015) Insect host plant selection in complex environments. Curr Opin Insect Sci 8:1–7. https://doi.org/https://doi.org/10.1016/j.cois.2015.01.014
Chakroborty NK, Bienefeld K, Menzel R (2015) Odor learning and odor discrimination of bees selected for enhanced hygienic behavior. Apidologie 46:499–514. https://doi.org/10.1007/s13592-014-0342-x
CAS
Article
Google Scholar
Chen X, Peiffer M, Tan C-W, Felton GW (2020) Fungi from the black cutworm Agrotis ipsilon oral secretions mediate plant–insect interactions. Arthropod Plant Interact 14:423–432
Article
Google Scholar
Christiaens JF, Franco LM, Cools TL, et al (2014) The fungal aroma gene ATF1 promotes dispersal of yeast cells through insect vectors. Cell Rep 9:425–432. https://doi.org/https://doi.org/10.1016/j.celrep.2014.09.009
Chung SH, Rosa C, Scully ED et al (2013) Herbivore exploits orally secreted bacteria to suppress plant defenses. Proc Natl Acad Sci 110:15728–15733. https://doi.org/10.1073/pnas.1308867110
Article
PubMed
Google Scholar
Clyne PJ, Warr CG, Carlson JR (2000) Candidate taste receptors in Drosophila. Science 287:1830–1834. https://doi.org/10.1126/science.287.5459.1830
CAS
Article
PubMed
Google Scholar
Compant S, Samad A, Faist H, Sessitsch A (2019) A review on the plant microbiome: ecology, functions, and emerging trends in microbial application. J Adv Res 19:29–37. https://doi.org/10.1016/j.jare.2019.03.004
CAS
Article
PubMed
PubMed Central
Google Scholar
de Fouchier A, Walker WB III, Montagné N et al (2017) Functional evolution of Lepidoptera olfactory receptors revealed by deorphanization of a moth repertoire. Nat Commun 8:15709. https://doi.org/10.1038/ncomms15709
CAS
Article
PubMed
PubMed Central
Google Scholar
Degenhardt J, Gershenzon J, Baldwin IT, Kessler A (2003) Attracting friends to feast on foes: engineering terpene emission to make crop plants more attractive to herbivore enemies. Curr Opin Biotechnol 14:169–176. https://doi.org/10.1016/S0958-1669(03)00025-9
CAS
Article
PubMed
Google Scholar
Degenhardt J, Hiltpold I, Köllner TG et al (2009) Restoring a maize root signal that attracts insect-killing nematodes to control a major pest. Proc Natl Acad Sci 106:13213–13218. https://doi.org/10.1073/pnas.0906365106
Article
PubMed
Google Scholar
Dekker T, Ibba I, Siju KP et al (2006) Olfactory shifts parallel superspecialism for toxic fruit in Drosophila melanogaster sibling, D. sechellia. Curr Biol 16:101–109. https://doi.org/10.1016/j.cub.2005.11.075
CAS
Article
PubMed
Google Scholar
Ding B-J, Hofvander P, Wang H-L et al (2014) A plant factory for moth pheromone production. Nat Commun 5:1–7. https://doi.org/10.1038/ncomms4353
CAS
Article
Google Scholar
Dobritsa A, van der Goes van Naters W, Warr C, et al (2003) Integrating the molecular and cellular basis of odor coding in the Drosophila Antenna. Neuron 37:827–841. https://doi.org/10.1016/S0896-6273(03)00094-1
CAS
Article
PubMed
Google Scholar
Dweck HKM, Ebrahim SAM, Kromann S et al (2013) Olfactory preference for egg laying on citrus substrates in Drosophila. Curr Biol 23:2472–2480. https://doi.org/10.1016/j.cub.2013.10.047
CAS
Article
PubMed
Google Scholar
El-Shafie HAF, Faleiro JR (2017) Semiochemicals and thier potential use in pest management. In: Shields VDC (ed) Biological control of pest and vector insects. InTech, Rijeka, Croatia, pp 3–22
Google Scholar
Erb M, Veyrat N, Robert CAM et al (2015) Indole is an essential herbivore-induced volatile priming signal in maize. Nat Commun 6:1–10. https://doi.org/10.1038/ncomms7273
CAS
Article
Google Scholar
Estrada-Peña A, Gray J, Kahl O et al (2013) Research on the ecology of ticks and tick-borne pathogens—methodological principles and caveats. Front Cell Infect Microbiol 3(29):1–12
Google Scholar
Fandino RA, Haverkamp A, Bisch-Knaden S et al (2019) Mutagenesis of odorant coreceptor Orco fully disrupts foraging but not oviposition behaviors in the hawkmoth Manduca sexta. Proc Natl Acad Sci 116:15677–15685. https://doi.org/10.1073/pnas.1902089116
CAS
Article
PubMed
Google Scholar
Flórez LV, Scherlach K, Gaube P et al (2017) Antibiotic-producing symbionts dynamically transition between plant pathogenicity and insect-defensive mutualism. Nat Commun 8:15172. https://doi.org/10.1038/ncomms1517
CAS
Article
PubMed
PubMed Central
Google Scholar
Fraenkel GS (1959) The raison d’Etre of secondary plant substances. Science 129:1466–1470. https://doi.org/10.1126/science.129.3361.1466
CAS
Article
PubMed
Google Scholar
Gallagher M, Wysocki CJ, Leyden JJ et al (2008) Analyses of volatile organic compounds from human skin. Br J Dermatol 159:780–791. https://doi.org/10.1111/j.1365-2133.2008.08748.x
CAS
Article
PubMed
PubMed Central
Google Scholar
Ghaninia M, Larsson M, Hansson BS, Ignell R (2008) Natural odor ligands for olfactory receptor neurons of the female mosquito Aedes aegypti: use of gas chromatography-linked single sensillum recordings. J Exp Biol 211:3020–3027. https://doi.org/10.1242/jeb.016360
Article
PubMed
Google Scholar
Gillette NE, Munson AS (2007) Semiochemical sabotage : Behavioral chemicals for protection of western conifers from bark beetles. In: J.L. Hayes, Lundquist JE (eds) Proceedings of a symposium at the 2007 society of American Foresters Conference. United States Department of Agriculture, Portland, Oregon, pp 85–110
Girling RD, Stewart-Jones A, Dherbecourt J et al (2011) Parasitoids select plants more heavily infested with their caterpillar hosts: a new approach to aid interpretation of plant headspace volatiles. Proc Biol Sci 278:2646–2653. https://doi.org/10.1098/rspb.2010.2725
CAS
Article
PubMed
PubMed Central
Google Scholar
Grabe V, Sachse S (2018) Fundamental principles of the olfactory code. Biosystems 164:94–101. https://doi.org/https://doi.org/10.1016/j.biosystems.2017.10.010
Grunseich JM, Thompson MN, Aguirre NM, Helms AM (2019) The role of plant-associated microbes in mediating host-plant selection by insect herbivores. Plants (Basel, Switzerland) 9:1–23. https://doi.org/10.3390/plants9010006
CAS
Article
Google Scholar
Hallem EA, Ho MG, Carlson JR (2004) The molecular basis of odor coding in the Drosophila Antenna. Cell 117:965–979. https://doi.org/10.1016/j.cell.2004.05.012
CAS
Article
PubMed
Google Scholar
Hardoim PR, van Overbeek LS, Berg G et al (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320. https://doi.org/10.1128/MMBR.00050-14
Article
PubMed
PubMed Central
Google Scholar
Havko NE, Das MR, Mcclain AM et al (2019) Insect herbivory antagonizes leaf cooling responses to elevated temperature in tomato. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.1913885117
Article
Google Scholar
Healy TP, Jepson PC (1988) The location of floral nectar sources by mosquitoes: the long-range responses of Anopheles arabiensis Patton (Diptera: Culicidae) to Achillea millefolium flowers and isolated floral odour. Bull Entomol Res 78:651–657. https://doi.org/10.1017/S0007485300015509
Article
Google Scholar
Hillbur Y, Celander M, Baur R et al (2005) Identification of the sex pheromone of the swede midge, Contarinia nasturtii. J Chem Ecol 31:1807–1828. https://doi.org/10.1007/s10886-005-5928-3
CAS
Article
PubMed
Google Scholar
Hoffland E, van Beusichem ML, Jeger MJ (1999) Nitrogen availability and susceptibility of tomato leaves to Botrytis cinerea. Plant Soil 210:263–272. https://doi.org/10.1023/A:1004661913224
CAS
Article
Google Scholar
Holopainen JK, Blande JD (2013) Where do herbivore-induced plant volatiles go? Front Plant Sci 4:1–13. https://doi.org/10.3389/fpls.2013.00185
Article
Google Scholar
Holopainen JK, Virjamo V, Ghimire RP et al (2018) Climate change effects on secondary compounds of forest trees in the northern hemisphere. Front Plant Sci 9(1445):1–19
Google Scholar
Howe GA (2008) Schaller A (2008) Direct defenses in plants and their induction by wounding and insect herbivores. In: Schaller A (ed) Induced Plant Resistance to Herbivory. Springer, New York, pp 7–29
Chapter
Google Scholar
Ignell R, Hill SR (2020) Malaria mosquito chemical ecology. Curr Opin Insect Sci 40:6–10. https://doi.org/10.1016/j.cois.2020.03.008
Article
PubMed
Google Scholar
Ioriatti C, Anfora G, Tasin M et al (2011) Chemical ecology and management of Lobesia botrana (Lepidoptera: Tortricidae). J Econ Entomol 104:1125–1137. https://doi.org/10.1603/EC10443
CAS
Article
PubMed
Google Scholar
James DG, Price TS (2004) Field-testing of methyl salicylate for recruitment and retention of beneficial insects in grapes and hops. J Chem Ecol 30:1613–1628. https://doi.org/10.1023/B:JOEC.0000042072.18151.6f
CAS
Article
PubMed
Google Scholar
Kempel A, Brandl R, Schädler M (2009) Symbiotic soil microorganisms as players in aboveground plant-herbivore interactions—the role of rhizobia. Oikos 118:634–640. https://doi.org/10.1111/j.1600-0706.2009.17418.x
Article
Google Scholar
Kempel A, Schmidt AK, Brandl R, Schädler M (2010) Support from the underground: Induced plant resistance depends on arbuscular mycorrhizal fungi. Funct Ecol 24:293–300. https://doi.org/10.1111/j.1365-2435.2009.01647.x
Article
Google Scholar
Khan ZR, Midega CAO, Pittchar JO et al (2014) Achieving food security for one million sub-Saharan African poor through push–pull innovation by 2020. Philos Trans R Soc B Biol Sci 369(1639):1–11. https://doi.org/10.1098/rstb.2012.0284
Article
Google Scholar
Khan ZR, Midega CAOO, Bruce TJAA et al (2010) Exploiting phytochemicals for developing a “push-pull” crop protection strategy for cereal farmers in Africa. J Exp Bot 61:4185–4196. https://doi.org/10.1093/jxb/erq229
CAS
Article
PubMed
Google Scholar
Kistler KE, Vosshall LB, Matthews BJ (2015) Genome engineering with CRISPR-Cas9 in the mosquito Aedes aegypti. Cell Rep 11:51–60. https://doi.org/10.1016/j.celrep.2015.03.009
CAS
Article
PubMed
PubMed Central
Google Scholar
Kivimäenpää M, Magsarjav N, Ghimire R, et al (2012) Influence of tree provenance on biogenic VOC emissions of Scots pine (Pinus sylvestris) stumps. Atmos Environ 60:477–485. https://doi.org/https://doi.org/10.1016/j.atmosenv.2012.07.018
Klaps J, Lievens B, Álvarez-Pérez S (2020) Towards a better understanding of the role of nectar-inhabiting yeasts in plant–animal interactions. Fungal Biol Biotechnol 7:1–7. https://doi.org/10.1186/s40694-019-0091-8
Article
PubMed
PubMed Central
Google Scholar
Kleist E, Mentel TF, Andres S et al (2012) Irreversible impacts of heat on the emissions of monoterpenes, sesquiterpenes, phenolic BVOC and green leaf volatiles from several tree species. Biogeosciences 9:5111–5123. https://doi.org/10.5194/bg-9-5111-2012
CAS
Article
Google Scholar
Koutroumpa FA, Monsempes C, François M-C et al (2016) Heritable genome editing with CRISPR/Cas9 induces anosmia in a crop pest moth. Sci Rep 6:1–9. https://doi.org/10.1038/srep29620
CAS
Article
Google Scholar
Kurtovic A, Widmer A, Dickson BJ (2007) A single class of olfactory neurons mediates behavioural responses to a Drosophila sex pheromone. Nature 446:542–546. https://doi.org/10.1038/nature05672
CAS
Article
PubMed
Google Scholar
Lazzari CR, Pereira MH, Lorenzo MG (2013) Behavioural biology of Chagas disease vectors. Mem Inst Oswaldo Cruz 108:34–47. https://doi.org/10.1590/0074-0276130409
Article
PubMed
PubMed Central
Google Scholar
Leal HM, Hwang JK, Tan K, Leal WS (2017) Attraction of Culex mosquitoes to aldehydes from human emanations. Sci Rep 7:1–10. https://doi.org/10.1038/s41598-017-18406-7
CAS
Article
Google Scholar
Leal WS (2013) Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annu Rev Entomol 58:373–391. https://doi.org/10.1146/annurev-ento-120811-153635
CAS
Article
PubMed
Google Scholar
Li T, Blande JD (2017) How common is within-plant signaling via volatiles? Plant Signal Behav 12:1–3. https://doi.org/10.1080/15592324.2017.1347743
CAS
Article
Google Scholar
Li Y, Zhang J, Chen D et al (2016) CRISPR/Cas9 in locusts: successful establishment of an olfactory deficiency line by targeting the mutagenesis of an odorant receptor co-receptor (Orco). Insect Biochem Mol Biol 79:27–35. https://doi.org/10.1016/j.ibmb.2016.10.003
CAS
Article
PubMed
Google Scholar
Liman A-S, Dalin P, Björkman C (2017) Enhanced leaf nitrogen status stabilizes omnivore population density. Oecologia 183:57–65. https://doi.org/10.1007/s00442-016-3742-y
Article
PubMed
Google Scholar
Mallinger RE, Hogg DB, Gratton C (2011) Methyl Salicylate attracts natural enemies and reduces populations of soybean aphids (Hemiptera: Aphididae) in soybean agroecosystems. J Econ Entomol 104:115–124. https://doi.org/10.1603/EC10253
Article
PubMed
Google Scholar
Manda H, Gouagna LC, Nyandat E et al (2007) Discriminative feeding behaviour of Anopheles gambiae s.s. on endemic plants in western Kenya. Med Vet Entomol 21:103–111. https://doi.org/10.1111/j.1365-2915.2007.00672.x
CAS
Article
PubMed
PubMed Central
Google Scholar
Mansourian S, Enjin A, Jirle EV et al (2018) Report Wild African Drosophila melanogaster are seasonal specialists on Marula fruit. Curr Biol 28:1–9. https://doi.org/10.1016/j.cub.2018.10.033
CAS
Article
Google Scholar
Martínez-Medina A, Fernandez I, Lok GB et al (2017) Shifting from priming of salicylic acid- to jasmonic acid-regulated defences by Trichoderma protects tomato against the root knot nematode Meloidogyne incognita. New Phytol 213:1363–1377. https://doi.org/10.1111/nph.14251
CAS
Article
PubMed
Google Scholar
Mathew D, Martelli C, Kelley-Swift E et al (2013) Functional diversity among sensory receptors in a Drosophila olfactory circuit. Proc Natl Acad Sci 110:2134–2143. https://doi.org/10.1073/pnas.1306976110
Article
Google Scholar
Matthews BJ, McBride CS, DeGennaro M et al (2016) The neurotranscriptome of the Aedes aegypti mosquito. BMC Genomics 17:1–20. https://doi.org/10.1186/s12864-015-2239-0
CAS
Article
Google Scholar
Matthews BJ, Younger MA, Vosshall LB (2019) The ion channel ppk301 controls freshwater egg-laying in the mosquito Aedes aegypti. Elife 8:1–27. https://doi.org/10.7554/eLife.43963.002
Article
Google Scholar
Mauchline AL, Hervé MR, Cook SM (2018) Semiochemical-based alternatives to synthetic toxicant insecticides for pollen beetle management. Arthropod Plant Interact 12:835–847. https://doi.org/10.1007/s11829-017-9569-6
Article
Google Scholar
McBride CS (2016) Genes and odors underlying the recent evolution of mosquito preference for humans. Curr Biol 26:R41–R46. https://doi.org/10.1016/j.cub.2015.11.032
CAS
Article
PubMed
PubMed Central
Google Scholar
McBride CS, Baier F, Omondi AB et al (2014) Evolution of mosquito preference for humans linked to an odorant receptor. Nature 515:222. https://doi.org/10.1038/nature13964
CAS
Article
PubMed
PubMed Central
Google Scholar
McCormick AC, Unsicker SB, Gershenzon J (2012) The specificity of herbivore-induced plant volatiles in attracting herbivore enemies. Trends Plant Sci 17:303–310. https://doi.org/10.1016/j.tplants.2012.03.012
CAS
Article
Google Scholar
Mello MO, Silva-Filho MC (2002) Plant–insect interactions: an evolutionary arms race between two distinct defense mechanisms. Bras J Plant Physiol 14:71–81. https://doi.org/10.1590/S1677-04202002000200001
CAS
Article
Google Scholar
Midega CAO, Pittchar JO, Pickett JA et al (2018) A climate-adapted push-pull system effectively controls fall armyworm, Spodoptera frugiperda (J E Smith), in maize in East Africa. Crop Prot 105:10–15. https://doi.org/10.1016/j.cropro.2017.11.003
Article
Google Scholar
Missbach C, Vogel H, Hansson BS et al (2020) Developmental and sexual divergence in the olfactory system of the marine insect Clunio marinus. Sci Rep 10:1–17. https://doi.org/10.1038/s41598-020-59063-7
CAS
Article
Google Scholar
Mitchell RF, Schneider TM, Schwartz AM et al (2020) The diversity and evolution of odorant receptors in beetles (Coleoptera). Insect Mol Biol 29:77–91. https://doi.org/10.1111/imb.12611
CAS
Article
PubMed
Google Scholar
Montagné N, Chertemps T, Brigaud I et al (2012) Functional characterization of a sex pheromone receptor in the pest moth Spodoptera littoralis by heterologous expression in Drosophila. Eur J Neurosci 36:2588–2596. https://doi.org/10.1111/j.1460-9568.2012.08183.x
Article
PubMed
Google Scholar
Montagné N, de Fouchier A, Newcomb RD, Jacquin-Joly E (2015) Chapter Three - Advances in the identification and characterization of olfactory receptors in insects. In: Glatz RBT-P in MB and TS (ed) Molecular Basis of Olfaction, 1st edn. Academic Press, pp 55–80
Mumm R, Dicke M (2010) Variation in natural plant products and the attraction of bodyguards involved in indirect plant defense: the present review is one in the special series of reviews on animal–plant interactions. Can J Zool 88:628–667. https://doi.org/10.1139/Z10-032
CAS
Article
Google Scholar
Musa N, Andersson K, Burman J et al (2013) Using sex pheromone and a multi-scale approach to predict the distribution of a rare saproxylic beetle. PLoS ONE. https://doi.org/10.1371/journal.pone.0066149
Article
PubMed
PubMed Central
Google Scholar
National Academy of Science Engineering and Medicine (2016) Global health impacts of vector-borne diseases: workshop summary. The National Academies Press, Washington
Google Scholar
Nikbakhtzadeh MR, Terbot JW II, Otienoburu PE, Foster WA (2014) Olfactory basis of floral preference of the malaria vector Anopheles gambiae (Diptera: Culicidae) among common African plants. J Vector Ecol 39:372–383. https://doi.org/10.1111/jvec.12113
Article
PubMed
Google Scholar
Nyasembe VO, Tchouassi DP, Pirk CWW et al (2018) Host plant forensics and olfactory-based detection in Afro-tropical mosquito disease vectors. PLoS Negl Trop Dis 12(2):1–21. https://doi.org/10.1371/journal.pntd.0006185
CAS
Article
Google Scholar
Omondi AB, Ghaninia M, Dawit M et al (2019) Age-dependent regulation of host seeking in Anopheles coluzzii. Sci Rep 9:1–9. https://doi.org/10.1038/s41598-019-46220-w
CAS
Article
Google Scholar
Omondi BA, Majeed S, Ignell R (2015) Functional development of carbon dioxide detection in the maxillary palp of Anopheles gambiae. J Exp Biol 218:2482–2488. https://doi.org/10.1242/jeb.116798
Article
PubMed
PubMed Central
Google Scholar
Pickett JA, Woodcock CM, Midega CAO, Khan ZR (2014) Push-pull farming systems. Curr Opin Biotechnol 26:125–132. https://doi.org/10.1016/j.copbio.2013.12.006
CAS
Article
PubMed
Google Scholar
Pineda A, Soler R, Weldegergis BT et al (2013) Non-pathogenic rhizobacteria interfere with the attraction of parasitoids to aphid-induced plant volatiles via jasmonic acid signalling. Plant, Cell Environ 36:393–404. https://doi.org/10.1111/j.1365-3040.2012.02581.x
CAS
Article
Google Scholar
Pineda A, Zheng SJ, van Loon JJA et al (2010) Helping plants to deal with insects: The role of beneficial soil-borne microbes. Trends Plant Sci 15:507–514. https://doi.org/10.1016/j.tplants.2010.05.007
CAS
Article
PubMed
Google Scholar
Poelman EH, Oduor AMO, Broekgaarden C et al (2009) Field parasitism rates of caterpillars on Brassica oleracea plants are reliably predicted by differential attraction of Cotesia parasitoids. Funct Ecol 23:951–962. https://doi.org/10.1111/j.1365-2435.2009.01570.x
Article
Google Scholar
Ramasamy S, Ometto L, Crava CM et al (2016) The evolution of olfactory gene families in Drosophila and the genomic basis of chemical-ecological adaptation in Drosophila suzukii. Genome Biol Evol 8:2297–2311. https://doi.org/10.1093/gbe/evw160
Article
PubMed
PubMed Central
Google Scholar
Rasmann S, Köllner TG, Degenhardt J et al (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732. https://doi.org/10.1038/nature03451
CAS
Article
PubMed
Google Scholar
Rering CC, Beck JJ, Hall GW et al (2018) Nectar-inhabiting microorganisms influence nectar volatile composition and attractiveness to a generalist pollinator. New Phytol 220:750–759. https://doi.org/10.1111/nph.14809
CAS
Article
PubMed
Google Scholar
Rhoades DF (1983) Responses of alder and willow to attack by tent caterpillars and webworms: Evidence for pheromonal sensitivity of willows. In: Hedin PA (ed) Plant Resistance to Insects. American Chemical Society, Washington, pp 55–68
Chapter
Google Scholar
Robinson A, Busula AO, Voets MA, et al (2018) Plasmodium-associated changes in human odor attract mosquitoes. Proc Natl Acad Sci 115:E4209 LP-E4218. https://doi.org/https://doi.org/10.1073/pnas.1721610115
Salamanca J, Souza B, Kyryczenko-Roth V, Rodriguez-Saona C (2019) Methyl salicylate increases attraction and function of beneficial arthropods in cranberries. Insects 10(12):1–12. https://doi.org/10.3390/insects10120423
Article
Google Scholar
Samietz J, Baur R, Hillbur Y (2012) Potential of synthetic sex pheromone blend for mating disruption of the swede midge, Contarinia nasturtii. J Chem Ecol 38:1171–1177. https://doi.org/10.1007/s10886-012-0180-0
CAS
Article
PubMed
Google Scholar
Sandoz J-C, Deisig N, De Brito Sanchez MG, Giurfa M (2007) Understanding the logics of pheromone processing in the honeybee brain: from labeled-lines to across-fiber patterns. Front Behav Neurosci 5:1–12
Google Scholar
Seenivasagan T, Sharma KR, Sekhar K et al (2009) Electroantennogram, flight orientation, and oviposition responses of Aedes aegypti to the oviposition pheromone n-heneicosane. Parasitol Res 104:827–833. https://doi.org/10.1007/s00436-008-1263-2
CAS
Article
PubMed
Google Scholar
Sobhy IS, Baets D, Goelen T et al (2018) Sweet scents: nectar specialist yeasts enhance nectar attraction of a generalist aphid parasitoid without affecting survival. Front Plant Sci 9:1–13
Article
Google Scholar
Steck K, Hansson BS, Knaden M (2009) Smells like home: Desert ants, Cataglyphis fortis, use olfactory landmarks to pinpoint the nest. Front Zool 6:5. https://doi.org/10.1186/1742-9994-6-5
Article
PubMed
PubMed Central
Google Scholar
Stensmyr MC, Dweck HKM, Farhan A et al (2012) A conserved dedicated olfactory circuit for detecting harmful microbes in drosophila. Cell 151:1345–1357. https://doi.org/10.1016/j.cell.2012.09.046
CAS
Article
PubMed
Google Scholar
Stewart AJ, Chapman W, Jenkins GI et al (2001) The effect of nitrogen and phosphorus deficiency on flavonol accumulation in plant tissues. Plant Cell Environ 24:1189–1197. https://doi.org/10.1046/j.1365-3040.2001.00768.x
CAS
Article
Google Scholar
Takken W, Knols BGJ (1999) Odor-mediated behavior of afrotropical malaria mosquitoes. Annu Rev Entomol 44:131–157. https://doi.org/10.1146/annurev.ento.44.1.131
CAS
Article
PubMed
Google Scholar
Takken W, Verhulst NO (2013) Host preferences of blood-feeding mosquitoes. Annu Rev Entomol 58:433–453. https://doi.org/10.1146/annurev-ento-120811-153618
CAS
Article
PubMed
Google Scholar
Tallon AK, Hill SR, Ignell R (2019) Sex and age modulate antennal chemosensory-related genes linked to the onset of host seeking in the yellow-fever mosquito, Aedes aegypti. Sci Rep 9:1–13. https://doi.org/10.1038/s41598-018-36550-6
CAS
Article
Google Scholar
Tandina F, Doumbo O, Yaro AS et al (2018) Mosquitoes (Diptera: Culicidae) and mosquito-borne diseases in Mali, West Africa. Parasit Vectors 11:1–12. https://doi.org/10.1186/s13071-018-3045-8
Article
Google Scholar
Taparia T, Ignell R, Hill SR (2017) Blood meal induced regulation of the chemosensory gene repertoire in the southern house mosquito. BMC Genomics 18:393. https://doi.org/10.1186/s12864-017-3779-2
CAS
Article
PubMed
PubMed Central
Google Scholar
Tian L, Hires SA, Mao T et al (2009) Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat Methods 6:875. https://doi.org/10.1038/nmeth.1398
CAS
Article
PubMed
PubMed Central
Google Scholar
Tian Z, Sun L, Li Y et al (2018) Antennal transcriptome analysis of the chemosensory gene families in Carposina sasakii (Lepidoptera: Carposinidae). BMC Genomics 19:1–16. https://doi.org/10.1186/s12864-018-4900-x
CAS
Article
Google Scholar
Trible W, Olivos-Cisneros L, McKenzie SK et al (2017) orco Mutagenesis causes loss of antennal lobe glomeruli and impaired social behavior in ants. Cell 170:727.e10-735.e10. https://doi.org/10.1016/j.cell.2017.07.001
CAS
Article
Google Scholar
Turlings TCJ, Erb M (2018) Tritrophic interactions mediated by herbivore-induced plant volatiles: mechanisms, ecological relevance, and application potential. Annu Rev Entomol 63:433–452. https://doi.org/10.1146/annurev-ento-020117-043507
CAS
Article
PubMed
Google Scholar
Turlings TCJ, Tumlinson JH, Lewis WJ (1990) Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250:1251–1253. https://doi.org/10.1126/science.250.4985.1251
CAS
Article
PubMed
Google Scholar
Turlings TCJ, Wäckers F (2004) Recruitment of predators and parasitoids by herbivore-injured plants. Adv Isect Chem Ecol 2:21–75. https://doi.org/10.1017/CBO9780511542664.003
Article
Google Scholar
van Dam NM (2012) Phytochemicals as mediators of aboveground-belowground interactions in plants. In: Iason GR, Dicke M, Hartley SE (eds) The ecology of plant secondary metabolites. Cambridge University Press, Cambridge, pp 190–203
Google Scholar
Venthur H, Zhou J-J (2018) Odorant receptors and odorant-binding proteins as insect pest control targets: a comparative analysis. Front Physiol 9:1–16
Article
Google Scholar
Verhulst NO, Andriessen R, Groenhagen U et al (2010) Differential attraction of malaria mosquitoes to volatile blends produced by human skin bacteria. PLoS ONE 5:e15829. https://doi.org/10.1371/journal.pone.0015829
CAS
Article
PubMed
PubMed Central
Google Scholar
Verhulst NO, Qiu YT, Beijleveld H et al (2011) Composition of human skin microbiota affects attractiveness to malaria mosquitoes. PLoS ONE 6:e28991. https://doi.org/10.1371/journal.pone.0028991
CAS
Article
PubMed
PubMed Central
Google Scholar
Vieira FG, Sánchez-Gracia A, Rozas J (2007) Comparative genomic analysis of the odorant-binding protein family in 12 Drosophila genomes: purifying selection and birth-and-death evolution. Genome Biol 8:235.1–235.16. https://doi.org/https://doi.org/10.1186/gb-2007-8-11-r235
Vonesh JR, Blaustein L (2010) Predator-induced shifts in mosquito oviposition site selection: A meta-analysis and implications for vector control. Isr J Ecol Evol 56:263–279. https://doi.org/10.1560/IJEE.56.3-4.263
Article
Google Scholar
Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10:828–840. https://doi.org/10.1038/nrmicro2910
CAS
Article
PubMed
Google Scholar
Vosshall LB, Amrein H, Morozov PS et al (1999) A spatial map of olfactory receptor expression in the Drosophila antenna. Cell 96:725–736. https://doi.org/10.1016/S0092-8674(00)80582-6
CAS
Article
PubMed
Google Scholar
Vosteen I, Weisser WW, Kunert G (2016) Is there any evidence that aphid alarm pheromones work as prey and host finding kairomones for natural enemies? Ecol Entomol 41:1–12. https://doi.org/10.1111/een.12271
Article
Google Scholar
Wachira SW, Ndungu M, Njagi PGN, Hassanali A (2010) Comparative responses of ovipositing Anopheles gambiae and Culex quinquefasciatus females to the presence of Culex egg rafts and larvae. Med Vet Entomol 24:369–374. https://doi.org/10.1111/j.1365-2915.2010.00913.x
CAS
Article
PubMed
Google Scholar
Wang J, Peiffer M, Hoover K et al (2017) Helicoverpa zea gut-associated bacteria indirectly induce defenses in tomato by triggering a salivary elicitor(s). New Phytol 214:1294–1306. https://doi.org/10.1111/nph.14429
CAS
Article
PubMed
Google Scholar
WHO (2014) A global brief on vector-borne diseases. World Health Organization, Geneva
Google Scholar
Wittstock U, Gershenzon J (2002) Constitutive plant toxins and their role in defense against herbivores and pathogens. Curr Opin Plant Biol 5:300–307. https://doi.org/10.1016/S1369-5266(02)00264-9
CAS
Article
PubMed
Google Scholar
Witzgall P, Kirsch P, Cork A (2010) Sex pheromones and their impact on pest management. J Chem Ecol 36:80–100. https://doi.org/10.1007/s10886-009-9737-y
CAS
Article
PubMed
Google Scholar
Wondwosen B, Birgersson G, Seyoum E et al (2016) Rice volatiles lure gravid malaria mosquitoes, Anopheles arabiensis. Sci Rep 6:37930. https://doi.org/10.1038/srep37930
CAS
Article
PubMed
PubMed Central
Google Scholar
Wondwosen B, Hill SR, Birgersson G et al (2017) A(maize)ing attraction: gravid Anopheles arabiensis are attracted and oviposit in response to maize pollen odours. Malar J 16:39. https://doi.org/10.1186/s12936-016-1656-0
CAS
Article
PubMed
PubMed Central
Google Scholar
Wondwosen B, Birgersson G, Tekie H et al (2018) Sweet attraction: sugarcane pollen-associated volatiles attract gravid Anopheles arabiensis. Malar J 17:1–9. https://doi.org/10.1186/s12936-018-2245-1
CAS
Article
Google Scholar
Wright GA, Schiestl FP (2009) The evolution of floral scent: the influence of olfactory learning by insect pollinators on the honest signalling of floral rewards. Funct Ecol 23:841–851. https://doi.org/10.1111/j.1365-2435.2009.01627.x
Article
Google Scholar
Wu J, Drappier J, Hilbert G, et al (2019) The effects of a moderate grape temperature increase on berry secondary metabolites. Oeno One 53:321–333. https://doi.org/10.20870/oeno-one.2019.53.2.2434
Yan H, Opachaloemphan C, Mancini G et al (2017) An engineered orco mutation produces aberrant social behavior and defective neural development in ants. Cell 170:736-747.e9. https://doi.org/10.1016/j.cell.2017.06.051
CAS
Article
PubMed
PubMed Central
Google Scholar
Yu X-D, Pickett J, Ma Y-Z et al (2012) Metabolic engineering of plant-derived (E)-β-farnesene synthase genes for a novel type of aphid-resistant genetically modified crop plants. J Integr Plant Biol 54:282–299. https://doi.org/10.1111/j.1744-7909.2012.01107.x
CAS
Article
PubMed
Google Scholar
Zufall F, Domingos AI (2018) The structure of Orco and its impact on our understanding of olfaction. J Gen Physiol 150:1602–1605. https://doi.org/10.1085/jgp.201812226
CAS
Article
PubMed
PubMed Central
Google Scholar