Skip to main content
Log in

Recent research on enhanced resistance to parasitic nematodes in sweetpotato

  • Review
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

Sweetpotato yields are affected by diverse environmental factors, such as viruses, fungal diseases, and parasitic nematodes. In particular, plant–parasitic nematodes are major pathogenic factors affecting sweetpotato cultivation regionally. Sedentary endoparasitic nematodes, including root-knot nematodes and cyst nematodes, cause serious sweetpotato yield losses in northeast Asia, including South Korea, China, and Japan. In this review, we describe the current status of research on nematode resistance in sweetpotato and molecular methods for resolving these cultivation problems. Conventional breeding and molecular techniques, including genome-editing-based transgenic technology and omics-based analyses, should be combined to develop sweetpotato cultivars with improved resistance to various important nematodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agu CM (2004) Growth and yield of sweetpotato as affected by Meloidogyne incognita. Trop Sci 44:89–91

    Article  Google Scholar 

  • Ahn YS, Chung MN, Lee JS, Jeong BC (2006) A new sweetpotato variety for food and processing,"Juhwangmi". Kor J Breed Sci 38:69–70

    Google Scholar 

  • Andrade M, Barker I, Cole D, Dapaah H, Elliott H, Fuentes S, Grüneberg W, Kapinga R, Kroschel J, Labarta R, Lemaga B, Loechl C, Low J, Lynam J, Mwanga R, Ortiz O, Oswald A, Thiele G (2009) Unleashing the potential of sweetpotato in sub-Saharan Africa: current challenges and way forward. International Potato Center (CIP), Lima

    Book  Google Scholar 

  • Antonio GC, Takeiti CY, de Oliveira RA, Park KJ (2011) Sweetpotato: production, morphological and physicochemical characteristics, and technological process. Fruit Veg Cereal Sci 5:1–18

    Google Scholar 

  • Atkinson HJ, Urwin PE, Clarke MC, McPherson MJ (1996) Image analysis of the growth of Globodera pallida and Meloidogyne incognita on transgenic tomato roots expressing cystatins. J Nematol 28:209–215

    CAS  PubMed  PubMed Central  Google Scholar 

  • Benian GM, Mercer KB, Miller RK, Tinley TL, Sheth S, Qadota H (2006) Caenorhabditis elegans UNC-96 is a new component of M-lines that interacts with UNC-98 and paramyosin and is required in adult muscle for assembly and/or maintenance of thick filaments. Mol Biol Cell 17:3832–3847

    Article  PubMed  PubMed Central  Google Scholar 

  • Boss WF, Im YJ (2012) Phosphoinositide signaling. Ann Rev. Plant Biol 63:409–429

    Article  CAS  Google Scholar 

  • Bovell-Benjamin AC (2007) Sweetpotato: a review of its past, present, and future role in human nutrition. Adv Food Nut Res 52:1–59

    Article  CAS  Google Scholar 

  • Cai D, Thurau T, Tian Y, Lange T, Yeh KW, Jung C (2003) Sporamin-mediated resistance to beet cyst nematodes (Heterodera schachtii Schm.) is dependent on trypsin inhibitory activity in sugar beet (Beta vulgaris L.) hairy roots. Plant Mol Biol 51:839–849

    Article  CAS  PubMed  Google Scholar 

  • Choi DR, Lee JK, Park BY, Chung MN (2006) Occutrrence of root-knot nematodes in sweetpotato fields and resistance screening of sweetpotato cultivars. Kor J Appl Entomol 45:211–216

    Google Scholar 

  • Chen HJ, Wang SJ, Chen CC, Yeh KW (2006) New gene construct strategy in T-DNA vector to enhance expression level of sweetpotato sporamin and insect resistance in transgenic Brassica oleracea. Plant Sci 171:367–374

    Article  CAS  PubMed  Google Scholar 

  • Clark CA, Davis JA, Abad JA, Cuellar WJ, Fuentes S, Kreuze JF, Gibson RW, Mukasa SB, Tugume AK, Tairo FD, Valkonen JPT (2012) Sweetpotato viruses: 15 years of progress on understanding and managing complex diseases. Plant Dis 96:168–185

    Article  CAS  PubMed  Google Scholar 

  • Clark CA, Ferrin DM, Smith TP, Holmes GJ (eds) (2013) Compendium of sweetpotato diseases, pests and disorders. APS Press, Minnesota

    Google Scholar 

  • Clark CA, Holmes GJ, Ferrin DM (2009) Chapter 7, major fungal and bacterial diseases. In: Loebenstein G, Thottappilly G (eds) The sweetpotato. Springer, New York

    Google Scholar 

  • Fan WJ, Wei ZR, Zhang M, Ma PY, Liu GL, Zheng JL, Guo XD, Zhang P (2015) Resistance to Ditylenchus destructor infection in sweetpotato by the expression of small interfering RNAs targeting unc-15, a movement-related gene. Phytopathology 105:1458–1465

    Article  CAS  PubMed  Google Scholar 

  • FAO (1998) FAO production year book for 1996, no. 50. Food and Agriculture Organization of the United Nations, Rome, Italy, pp 91–92

  • Feng JY, Li M, Zhao S, Zhang C, Yang ST, Qiao S, Tan WF, Qu HJ, Wang DY, Pu ZG (2018) Analysis of evolution and genetic diversity of sweetpotato and its related different polyploidy wild species I. trifida using RAD-seq. BMC Plant Biol 18:184

    Article  CAS  Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO), Food and Agriculture Organization Statistical Databases (FAOSTAT) (2015). https://faostat3.fao.org/browse/Q/QC/E. Food and Agriculture Organization of the United Nations (FAO), Food and Agriculture Organization Statistical Databases (FAOSTAT), 2015, https://faostat3.fao.org/browse/Q/QC/E

  • Fuller VL, Lilley CJ, Urwin PE (2008) Nematode resistance. New Phytol 180:27–44

    Article  CAS  PubMed  Google Scholar 

  • Gao S, Yu B, Yuan L, Zhai H, He SZ, Liu QC (2011) Production of transgenic sweetpotato plants resistant to stem nematodes using Oryzacystatin-I gene. Sci Hort 128:408–414

    Article  CAS  Google Scholar 

  • Gheysen G, Vanholme B (2007) RNAi from plants to nematodes. Trends Biotechnol 25:89–92

    Article  CAS  PubMed  Google Scholar 

  • Guo X, Xie Y, Jia Z, Ma P, Bian X (2012) Study on sweetpotato stem nematode disease. Plant Dis Pests 3:21–23

    Google Scholar 

  • Ha J, Won JC, Jung YH, Yang JW, Lee HU, Nam KJ, Park SC, Jeong JC, Lee SW, Lee DW, Chung JS, Lee JJ, Kim YH (2017) Comparative proteomic analysis of the response of fibrous roots of nematode-resistant and -sensitive sweetpotato cultivars to root-knot nematode Meloidogyne incognita. Acta Physiol Plant 39:262

    Article  CAS  Google Scholar 

  • Hirakawa H, Okada Y, Tabuchi H, Shirasawa K, Watanabe A, Tsuruoka H, Minami C, Nakayama S, Sasamoto S, Kohara M, Kishida Y, Fujishiro T, Kato M, Nanri K, Komaki A, Yoshinaga M, Takahata Y, Tanaka M, Tabata S, Isobe SN (2015) Survey of genome sequences in a wild sweetpotato, Ipomoea trifida (H. B. K.) G Don. DNA Res 22:171–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holbein J, Grundler FMW, Siddique S (2016) Plant basal resistance to nematodes: an update. J Exp Bot 67:2049–2061

    Article  CAS  PubMed  Google Scholar 

  • Iwahori H, Sano Z, Ogawa T (2000) Distribution of main plant parasitic nematodes in sweetpotato and taro fields in Kyushu and Okinawa, Japan. 1. Survey in the central and southern parts in Kyushu Island (Kumamoto, Miyazaki and Kagoshima Prefs.) and development of an effective DNA analysis method for species identification. Kyushu Pl Prot Res 46:112–117

    Article  CAS  Google Scholar 

  • Jeong BC, Oh SK, Park KY, Rho SP, Chung KB, Chung DH, Chin MS, Hong EH, Park RK, Jung JW (1991) A new good eating quality sweetpotato variety "Yulmi". The Research Reports of the Rural Development Administration (Korea Republic). (Jun 1991). v. 33–1(Upland and Ind. Crops) p. 22–28.

  • Kai Y, Katayama K, Sakai T, Yoshinaga M (2010) Beniharuka: a new sweetpotato cultivar for table use. Sweetpotato Res Front 23:2

    Google Scholar 

  • Kistner MH, Daiber KC, Bester C (1993) The effect of root-knot nematodes (Meloidogyne spp.) and dry land conditions on the production of sweetpotato. JS Afr Soc Hortic Sci 3:108–110

    Google Scholar 

  • Kuranouchi T, Takada A, Nakamura Y, Fujita T, Nakatani M, Kumagai T, Katayama K (2015) Breeding of a new sweetpotato variety ‘Hoshikogane’ suitable for steamed and cured sweetpotato slices (‘Hoshi-imo’) with high yield and good quality. Bull Natl Inst Crop Sci 15:1–28

    Google Scholar 

  • Kyndt T, Vieira P, Gheysen G, de Almeida-Engler J (2013) Nematode feeding sites: unique organs in plant roots. Planta 238:807–818

    Article  CAS  PubMed  Google Scholar 

  • La Bonte DR, Wilson PW, Villordon AQ, Clark CA (2008) ‘Evangeline’ sweetpotato. HortScience 43:258–259

    Article  Google Scholar 

  • Lee IH, Shim D, Jeong JC, Sung YW, Nam KJ, Yang JW, Ha J, Lee JJ, Kim YH (2019) Transcriptome analysis of root-knot nematode (Meloidogyne incognita)-resistant and susceptible sweetpotato cultivars. Planta 249:431–444

    Article  CAS  PubMed  Google Scholar 

  • Loebenstein G, Thottappilly G, Fuentes S, Cohen J (2009) Chapter 8, virus and phytoplasma diseases. In: Loebenstein G, Thottappilly G (eds) The sweetpotato. Springer, Science+ Bussiness Media B.V., New York

    Chapter  Google Scholar 

  • Michael TP, Jackson S (2013) The first 50 plant genomes. Plant Genome 6:1–7

    Article  Google Scholar 

  • Mukhopadhyay S, Chattopadhyay A, Chakraborty I, Bhattacharya I (2011) Crops that feed the world 5. Sweetpotato. Sweetpotatoes for income and food security. Food Sec 3:283–305

    Article  Google Scholar 

  • Nicol JM, Turner SJ, Coyne DL, den Nijs L, Hockland S, Ma Z (2011) Current nematodes threats to world agriculture. In: Jones J, Gheysen G, Fenoll C (eds) Genomics and molecular genetics of plant-nematode interactions. Springer, Dordrecht, pp 21–43

    Chapter  Google Scholar 

  • Nielsen LW, Sasser JN (1959) Control of root-knot nematodes affecting Porto Rico sweetpotatoes. Phytopathology 49:135–140

    Google Scholar 

  • Ohara-Takada A, Kumagai T, Kuranouchi T, Nakamura Y, Fujita T, Nakatani M, Tamiya S, Katayama T (2016) ‘Aikomachi’, a new sweetpotato cultivar with good appearance and high confectionery quality. Bull Natl Inst Crop Sci 16:35–56

    Google Scholar 

  • Overstreet C (2009) Chapter 9, nematoses. In: Loebenstein G, Thottappilly G (eds) The Sweetpotato. Springer Science+Bussiness Media B.V., New York

    Google Scholar 

  • Palomares-Rius JE, Kikuchi T (2013) Omics fields of study related to plant-parasitic nematodes. J Integ Omics 3:1–10

    Article  Google Scholar 

  • Shirasawa K, Tanaka M, Takahata Y, Ma D, Cao Q, Liu Q, Zhai H, Kwak SS, Jeong JC, Yoon UH, Lee HU, Hirakawa H, Isobe S (2017) A high-density SNP genetic map consisting of a complete set of homologous groups in autohexaploid sweetpotato (Ipomoea batatas). Sci Rep 7:44207

    Article  PubMed  PubMed Central  Google Scholar 

  • Sorensen KA (2009) Chapter 10, sweetpotato insects: identification, biology and management. In: Loebenstein G, Thottappilly G (eds) The sweetpotato. Springer, Science+Bussiness Media B.V., New York

    Google Scholar 

  • Vain P, Worland B, Clarke MC, Richard G, Beavis M, Liu H, Kohli A, Leech M, Snape J, Christou P, Atkinson H (1998) Expression of an engineered cysteine proteinase inhibitor (Oryzacystatin-IΔD86) for nematode resistance in transgenic rice plants. Theo Appl Gene 96:266–271

    Article  CAS  Google Scholar 

  • World Bank (2008) World development report 2008: agriculture for development. /e World Bank, Washington DC

  • Xu Z, Zhao YQ, Yang DJ, Sun HJ, Zhang CL, Xie YP (2015) Attractant and repellent effects of sweetpotato root exudates on the potato rot nematode, Ditylenchus destructor. Nematology 17:117–124

    Article  CAS  Google Scholar 

  • Yamashita M (2003) The influence of a root-knot nematode, Meloidogyne incognita, on formation of root system in sweetpotatoes (Ipomoea batatas (L), Lam)). Root Res 12:115–118

    Article  Google Scholar 

  • Yan L, Lai X, Li X, Wei C, Tan X, Zhang Y (2015) Analyses of the complete genome and gene expression of chloroplast of sweetpotato [Ipomoea batata]. PLoS ONEne 10:e0124083

    Article  CAS  Google Scholar 

  • Yeh KW, Chen JC, Lin MI, Chen YM, Lin CY (1997a) Functional activity of sporamin from sweetpotato (Ipomoea batatas Lam.): a tuber storage protein with trypsin inhibitory activity. Plant Mol Biol 33:565–570

    Article  CAS  PubMed  Google Scholar 

  • Yeh KW, Lin MI, Tuan SJ, Chen YM, Lin CY, Kao SS (1997b) Sweetpotato (Ipomoea batatas Lam.) trypsin inhibitors expressed in transgenic plants confer resistance against Spodoptera litura. Plant Cell Rep 16:696–699

    Article  CAS  PubMed  Google Scholar 

  • Zhai H, Wang F, Si Z, Huo J, Xing L, An Y, He S, Liu Q (2016) A myo-inositol-1-phosphate synthase gene, IbMIPS1, enhances salt and drought tolerance and stem nematode resistance in transgenic sweetpotato. Plant Biotechnol J 14:592–602

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT, and Future Planning (2018R1A1A1A05018446).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Hee Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, YH., Yang, JW. Recent research on enhanced resistance to parasitic nematodes in sweetpotato. Plant Biotechnol Rep 13, 559–566 (2019). https://doi.org/10.1007/s11816-019-00557-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-019-00557-w

Keywords

Navigation