Skip to main content
Log in

Comparative proteomic analysis of the response of fibrous roots of nematode-resistant and -sensitive sweet potato cultivars to root-knot nematode Meloidogyne incognita

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

As a major root-knot nematode (RKN), Meloidogyne incognita causes serious losses in the yield of sweet potato (Ipomoea batatas L.). To successfully colonize the host plant, RKNs elicit changes of dramatic physiological and morphological features in the plants. The expression of several genes is regulated as the nematode establishes its feeding site. Therefore, in this study, we analyzed the proteomes in the fibrous roots of sweet potato plants by an infection of RKN to understand the effect of the infection on the plant root regions. This study revealed differences in proteomes of the RKN-resistant sweet potato cultivar Juhwangmi and RKN-sensitive cultivar Yulmi. During plant growth, Juhwangmi plants were shown to be more resistant to M. incognita than Yulmi plants. No M. incognita egg formation was observed in Juhwangmi plants, whereas 587 egg masses were formed in Yulmi plants. Differentially expressed 64 spots were confirmed by proteomic analysis using 2-D gel electrophoresis with three spots up-regulated in the two cultivars during RKN infection. Of these 64 protein spots, 20 were identified as belonging to such different functional categories as the defense response, cell structure, and energy metabolism. This study provides insight into the molecular and biochemical mechanics of the defense response and metabolism of sweet potato plant during nematode invasion. We anticipate that this study will also provide a molecular basis for useful crop breeding and the development of nematode-tolerant plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agu CM (2004) Growth and yield of sweet potato as affected by Meloidogyne incognita. Trop Sci 44:89–91

    Article  Google Scholar 

  • Bird DM (1996) Manipulation of host gene expression by root-knot nematodes. J Parasitol 82:881–888

    Article  CAS  PubMed  Google Scholar 

  • Böckenhoff A, Grundler FMW (1994) Studies on the nutrient uptake of the beet cyst nematode H. schachtii by in situ microinjection of fluorescent probes into the feeding structures in Arabidopsis thaliana. Parasitology 109:249–254

    Article  Google Scholar 

  • Bridge J, Starr JL (2010) Plant nematodes of agricultural importance a color handbook. Academic Press, San Diego, pp 77–78

    Google Scholar 

  • Cai D, Thurau T, Tian Y, Lange T, Yeh KW, Jung C (2003) Sporamin-mediated resistance to beet cyst nematodes (Heterodera schachtii Schm.) is dependent on trypsin inhibitory activity in sugar beet (Beta vulgaris L.) hairy roots. Plant Mol Biol 51:839–849

    Article  CAS  PubMed  Google Scholar 

  • Caillaud MC, Dubreuil G, Quentin M, Barbeoch LP, Lecomte P, Engler J, Abad P, Rosso MN, Favery B (2008) Root-knot nematodes manipulate plant cell functions during a compatible interaction. J Plant Physiol 165:104–113

    Article  CAS  PubMed  Google Scholar 

  • Cervantes-Flores JC, Yencho GC, Davis EL (2002a) Efficient evaluation of resistance to three root-knot nematode species in selected sweet potato cultivars. Hort Sci 37:390–392

    Google Scholar 

  • Cervantes-Flores JC, Yencho GC, Davis EL (2002b) Host reactions of sweet potato genotypes to root-knot nematodes and variation in virulence of Meloidogyne incognita populations. Hort Sci 37:1112–1116

    Google Scholar 

  • Chen GX, Asada K (1989) Ascorbate peroxidase in tea leaves: occurrence of two isoenzymes and the differences in their enzymatic and molecular properties. Plant Cell Physiol 30:987–998

    Article  CAS  Google Scholar 

  • Choi DR, Lee JK, Park BY, Chung MN (2006) Occutrrence of root-knot nematodes in sweet potato fields and resistance screening of sweet potato cultivars. Kor J Appl Entomol 45:211–216

    Google Scholar 

  • Clark CA, Moyer JW (1998) Compendium of sweet potato diseases. APS Press, Saint Paul

    Google Scholar 

  • Diaz JT, Chinn MS, Truong VD (2014) Simultaneous saccharification and fermentation of industrial sweet potatoes for ethanol production and anthocyanins extraction. Ind Crop Prod 62:53–60

    Article  CAS  Google Scholar 

  • Du Z, Zhou X, Ling Y, Zhang Z, Su Z (2010) AgriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 38:W64–W70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubreuil G, Magliano M, Deleury E, Abad P, Rosso MN (2007) Transcriptome analysis of root-knot nematode functions induced in the early stages of parasitism. New Phytol 176:426–436

    Article  CAS  PubMed  Google Scholar 

  • Engler JA, Vleesschauwer VD, Burssens S, Celenza JLJ, Inzé D, Montagu MV, Engler G, Gheysen G (1999) Molecular Markers and cell cycle inhibitors show the importance of cell cycle progression in nematode-induced galls and syncytia. Plant Cell 11:793–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goverse A, Smart G (2014) The activation and suppression of plant innate immunity by parasitic nematodes. Annu Rev Phytopathol 52:243–265

    Article  CAS  PubMed  Google Scholar 

  • Grace MH, Yousef GG, Gustafson SJ, Truong VD, Yencho GC, Lila MA (2014) Phytochemical changes in phenolics, anthocyanins, ascorbic acid, and carotenoids associated with sweet potato storage and impacts on bioactive properties. Food Chem 145:717–724

    Article  CAS  PubMed  Google Scholar 

  • Hajduch M, Ganapathy A, Stein JW, Thelen JJ (2005) A systematic proteomic study of seed filling in soybean. Establishment of high-resolution two-dimensional reference maps, expression profiles, and an interactive proteome database. Plant Physiol 137:1397–1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Him NA, Gillan V, Emes RD, Maitland K, Devaney E (2009) Hsp-90 and the biology of nematodes. BMC Evol Biol 9:254

    Article  PubMed  PubMed Central  Google Scholar 

  • Ibrahim HMM, Hosseini P, Alkharouf NW, Hussein EHA, Gamal El-Din AEKY, Aly MA, Matthews BF (2011) Analysis of gene expression in soybean (Glycine max) roots in response to the root knot nematode Meloidogyne incognita using microarrays and KEGG pathways. BMC Genom 12:220

    Article  CAS  Google Scholar 

  • Inze D, De Veylder L (2006) Cell cycle regulation in plant development. Ann Rev Gen 40:77–105

    Article  CAS  Google Scholar 

  • Jammes F, Lecomte P, De Almeida-Engler J, Bitton F, Martin-Magniette ML, Renou JP, Abad P, Favery B (2005) Genome-wide expression profiling of the host response to root-knot nematode infection in Arabidopsis. Plant J 44:447–458

    Article  CAS  PubMed  Google Scholar 

  • Jones A, Dukes PD (1980) Heritabilities of sweet potato resistances to root-knot caused by Meloidogyne incognita and M. javanica. J Am Soc Hortic Sci 105:154–156

    Google Scholar 

  • Kistner MH, Daiber KC, Bester C (1993) The effect of root-knot nematodes (Meloidogyne spp.) and dry land conditions on the production of sweet potato. JS Afr Soc Hortic Sci 3:108–110

    Google Scholar 

  • Kreuze J (2002) Molecular studies on the sweet potato virus disease and its two causal agents. In: Acta Universitatis Agriculturae Sueciae Agraria 335. Department of Plant Biol, Sveriges lantbrukuniversitet, Uppsala, Sweden

  • Kwon YS, Lee DY, Rakwal R, Baek SB, Lee JH, Kwak YS, Seo JS, Chung WS, Bae DW, Kim SG (2016) Proteomic analyses of the interaction between the plant-growth promoting rhizobacterium Paenibacillus polymyxa E681 and Arabidopsis thaliana. Proteomics 16:122–135

    Article  CAS  PubMed  Google Scholar 

  • Lee JJ, Park KW, Kwak YS, Ahn JY, Jung YH, Lee BH, Jeong JC, Lee HS, Kwak SS (2012) Comparative proteomic study between tuberous roots of light orange- and purple-fleshed sweet potato cultivars. Plant Sci 193–194:120–129

    Article  PubMed  Google Scholar 

  • Melillo MT, Leonetti P, Bongiovanni M, Castagnone-Sereno P, Bleve-Zacheo T (2006) Modulation of reactive oxygen species activities and H2O2 accumulation during compatible and incompatible tomato–root-knot nematode interactions. New Phytol 170:501–512

    Article  CAS  PubMed  Google Scholar 

  • Molinari S, Miacola C (1997) Antioxidant enzymes in phytoparasitic nematodes. J Nematol 29:153–159

    CAS  PubMed  PubMed Central  Google Scholar 

  • Palomares-Rius JE, Kikuchi T (2013) Omics fields of study related to plant-parasitic nematodes. J Integ Omic 3:1–10

    Google Scholar 

  • Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 372:1305–1319

    Article  Google Scholar 

  • Simonetti E, Alba E, Montes MJ, Delibes A, Lopez-Brana I (2010) Analysis of ascorbate peroxidase genes expressed in resistant and susceptible wheat lines infected by the cereal cyst nematode, Heterodera avenae. Plant Cell Rep 29:1169–1178

    Article  CAS  PubMed  Google Scholar 

  • Sung DY, Vierling E, Guy CL (2001) Comprehensive expression profile analysis of the Arabidopsis Hsp70 gene family. Plant Physiol 126:789–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viaene N, Smol N, Bert W (2012) General techniques in nematology. Academia Press, Gent. Belgium. Pp58-59

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trend Plant Sci 9:244–252

    Article  CAS  Google Scholar 

  • Williamson VM, Gleason CA (2003) Plant–nematode interactions. Curr Opin Plant Biol 6:327–333

    Article  CAS  PubMed  Google Scholar 

  • Yeh KW, Chen JC, Lin MI, Chen YM, Lin CY (1997) Functional activity of sporamin from sweet potato (Ipomoea batatas Lam.): a tuber storage protein with trypsin inhibitory activity. Plant Mol Biol 33:565–570

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (NRF-2015R1C1A1A02036323), and KRIBB Research Initiative Program (KGM5281711).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jeung Joo Lee or Yun-Hee Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by M. Stobiecki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ha, J., Won, J.C., Jung, Y.H. et al. Comparative proteomic analysis of the response of fibrous roots of nematode-resistant and -sensitive sweet potato cultivars to root-knot nematode Meloidogyne incognita . Acta Physiol Plant 39, 262 (2017). https://doi.org/10.1007/s11738-017-2560-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-017-2560-0

Keywords

Navigation