Skip to main content
Log in

Transgenic tobacco plants expressing grass AstEXPA1 gene show improved performance to several stresses

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

Expansins are cell wall-loosening proteins and now widely accepted to associate with the plant resistance against various abiotic stresses. In this study, we cloned an expansin gene of AstEXPA1 from Agrostis stolonifera, a heat-resistant creeping bentgrass cultivar, and transformed it into tobacco plants. Physiological index test showed that the transgenic lines were resistant to various abiotic stresses of drought, heat, cold, and salt in comparison to non-transgenic plants. Comprehensive analysis of four physiological response indices showed that the transgenic plants performed much better resistance to drought, following to heat, cold and salt stress, respectively. Meanwhile soluble sugar content displayed more weight to plant resistance by over-expressing AstEXPA1 gene, followed as proline content, REL, and MDA content. The results here would expand our understanding of the expansin roles and drive better insights into plant molecular breeding against stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abuqamar S, Ajeb S, Sham A, Enan MR, Iratni R (2013) A mutation in the expansin-like A2 gene enhances resistance to necrotrophic fungi and hypersensitivity to abiotic stress in Arabidopsis thaliana. Mol plant pathol 14:813–827

    Article  CAS  PubMed  Google Scholar 

  • Ataide GM, Matos ACB (2015) Micropilar and embryonic events during hydration of Melanoxylon brauna Schott seeds. J Seed Sci 37:192–201

    Google Scholar 

  • Bae JM, Kwak MS, Noh SA, Oh MJ, Kim YS, Shin JS (2014) Overexpression of sweetpotato expansin cDNA (IbEXP1) increases seed yield in Arabidopsis. Transgenic Res 23:657–667

    Article  CAS  PubMed  Google Scholar 

  • Boron AK, Van Loock B, Suslov D, Markakis MN, Verbelen JP, Vissenberg K (2015) Overexpression of AtEXLA2 alters etiolated arabidopsis hypocotyl growth. Ann Bot-Lond 115:67–80

    Article  CAS  Google Scholar 

  • Cosgrove DJ (2000) Loosening of plant cell walls by expansins. Nature 407:321–326

    Article  CAS  PubMed  Google Scholar 

  • Devi MJ, Taliercio EW, Sinclair TR (2015) Leaf expansion of soybean subjected to high and low atmospheric vapour pressure deficits. J Exp Bot 66:1845–1850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farissi M, Bouizgaren A, Faghire M, Bargaz A, Ghoulam C (2013) Agrophysiological and biochemical properties associated with adaptation of Medicago sativa populations to water deficit. Turk J Bot 37:1166–1175

    Article  CAS  Google Scholar 

  • Han YY, Li AX, Li F, Zhao MR, Wang W (2012) Characterization of a wheat (Triticum aestivum L.) expansin gene, TaEXPB23, involved in the abiotic stress response and phytohormone regulation. Plant Physiol Bioch 54:49–58

    Article  CAS  Google Scholar 

  • Han YY, Chen YH, Yin SH, Zhang M, Wang W (2015) Over-expression of TaEXPB23, a wheat expansin gene, improves oxidative stress tolerance in transgenic tobacco plants. J Plant Physiol 173:62–71

    Article  CAS  PubMed  Google Scholar 

  • He XY, Zeng JB, Cao FB, Ahmed IM, Zhang GP, Vincze E, Wu FB (2015) HvEXPB7, a novel β-expansin gene revealed by the root hair transcriptome of Tibetan wild barley, improves root hair growth under drought stress. J Exp Bot 66:7405–7419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Circ Calif Agric Exp Sta 347:357–359

    Google Scholar 

  • Kong FJ, Oyanagi A, Komatsu S (2010) Cell wall proteome of wheat roots under flooding stress using gel-based and LC MS/MS-based proteomics approaches. BBA Proteins Prote 1804:124–136

    Article  CAS  Google Scholar 

  • Kubacka-Zębalska M, Kacperska A (1999) Low temperature-induced modifications of cell wall content and polysaccharide composition in leaves of winter oilseed rape (Brassica napus L. var. oleifera L.). Plant Sci 148:59–67

    Article  Google Scholar 

  • Kuluev BR, Safiullina MG, Knyazev AV, Chemeris AV (2013a) Effect of ectopic expression of NtEXPA5 gene on cell size and growth of organs of transgenic tobacco plants. Russ J Dev Biol 44:28–34

    Article  CAS  Google Scholar 

  • Kuluev BR, Safiullina MG, Knyazev AV, Chemeris AV (2013b) Morphological analysis of transgenic tobacco plants expressing the PnEXPA3 gene of black poplar (Populus nigra). Russ J Dev Biol 44:129–134. doi:10.1134/S106236041303003X

    Article  CAS  Google Scholar 

  • Kuluev BR, Knyazev AV, Nikonorov YM, Chemeris AV (2014) Role of the expansin genes NtEXPA1 and NtEXPA4 in the regulation of cell extension during tobacco leaf growth. Russ J Genet 50:489–497

    Article  CAS  Google Scholar 

  • Le Gall H, Philippe F, Domon JM, Gillet F, Pelloux J, Rayon C (2015) Cell wall metabolism in response to abiotic stress. Plants 4:112–166

    Article  PubMed  PubMed Central  Google Scholar 

  • Li F, Xing SC, Guo QF, Zhao MR, Zhang J, Gao Q, Wang QP, Wang W (2011) Drought tolerance through over-expression of the expansin gene TaEXPB23 in transgenic tobacco. J Plant Physiol 168:960–966

    Article  CAS  PubMed  Google Scholar 

  • Lima RB, dos Santos TB, Vieira LGE, Ferrarese MDLL, Ferrarese-Filho O, Donatti L, Boeger MRT, de Oliveira Petkowicz CL (2013) Heat stress causes alterations in the cell-wall polymers and anatomy of coffee leaves (Coffea arabica L.). Carbohydr Polym 93:135–143

    Article  CAS  PubMed  Google Scholar 

  • Lima RB, dos Santos TB, Vieira LGE, Ferrarese MDLL, Ferrarese-Filho O, Donatti L, Boeger MRT, de Oliveira Petkowicz CL (2014) Salt stress alters the cell wall polysaccharides and anatomy of coffee (Coffea arabica L.) leaf cells. Carbohydr Polym 112:686–694

    Article  PubMed  Google Scholar 

  • Lü PT, Kang M, Jiang XQ, Dai FW, Gao JP, Zhang CQ (2013) RhEXPA4, a rose expansin gene, modulates leaf growth and confers drought and salt tolerance to Arabidopsis. Planta 237:1547–1559

    Article  PubMed  Google Scholar 

  • Maghsoodi M, Razmjoo J (2015) Identify physiological markers for drought tolerance in alfalfa. Agron J 107:149–157

    Article  Google Scholar 

  • Noh SA, Park SH, Huh GH, Paek KH, Shin JS, Bae JM (2009) Growth retardation and differential regulation of expansin genes in chilling-stressed sweetpotato. Plant Biotechnol Rep 3:75–85

    Article  Google Scholar 

  • Palapol Y, Kunyamee S, Thongkhum M, Ketsa S, Ferguson IB, van Doorn WG (2015) Expression of expansin genes in the pulp and the dehiscence zone of ripening durian (Durio zibethinus) fruit. J Plant Physiol 182:33–39

    Article  CAS  PubMed  Google Scholar 

  • Pandey R, Gupta A, Chowdhary A, Pal RK, Rajam MV (2015) Over-expression of mouse ornithine decarboxylase gene under the control of fruit-specific promoter enhances fruit quality in tomato. Plant Mol Biol 87:249–260

    Article  CAS  PubMed  Google Scholar 

  • Posch S, Bennett LT (2009) Photosynthesis, photochemistry and antioxidative defence in response to two drought severities and with re-watering in Allocasuarina luehmannii. Plant Biology 11:83–93

    Article  CAS  PubMed  Google Scholar 

  • Qiu SC, Ma NN, Che SG, Wang Y, Peng XY, Zhang GP, Wang GX, Huang JL (2014) Repression of OsEXPA3 expression leads to root system growth suppression in rice. Crop Sci 54:2201–2213

    Article  CAS  Google Scholar 

  • Sasidharan R, Voesenek LACJ, Pierik R (2011) Cell wall modifying proteins mediate plant acclimatization to biotic and abiotic stresses. Crit Rev Plant Sci 30:548–562

    Article  CAS  Google Scholar 

  • Shi Y, Xu X, Li HY, Xu Q, Xu JC (2013) Bioinformatics analysis of the expansin gene family in rice. Hereditas 36:809–820

    Google Scholar 

  • Solecka D, Żebrowski J, Kacperska A (2008) Are pectins involved in cold acclimation and de-acclimation of winter oil-seed rape plants? Ann Bot-London 101:521–530

    Article  CAS  Google Scholar 

  • Sorensen I, Domozych D, Willats WGT (2010) How have plant cell walls evolved? Plant Physiol 153:366–372

    Article  PubMed  PubMed Central  Google Scholar 

  • Stefanowska M, Kuras M, Kubacka-zebalska M, Kacperska A (1999) Low temperature affects pattern of leaf growth and structure of cell walls in winter oilseed rape (Brassica napus L., var. oleifera L.). Ann Bot-London 84:313–319

    Article  Google Scholar 

  • Sun T, Zhang YX, Chai TY (2011) Cloning, characterization, and expression of the BjEXPA1 gene and its promoter region from Brassica juncea L. Plant Growth Regul 64:39–51

    Article  CAS  Google Scholar 

  • Tenhaken R (2015) Cell wall remodeling under abiotic stress. Front plant Sci 5:771–779

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Ma N, Qiu SC, Zou HY, Zang GZ, Kang ZH, Wang GX, Huang JL (2014) Regulation of the α-expansin gene OsEXPA8 expression affects root system architecture in transgenic rice plants. Mol Breed 34:47–57

    Article  Google Scholar 

  • Wang BM, Chen JJ, Chen LS, Wang XN, Wang R, Ma L, Peng SF, Luo J, Chen YZ (2015) Combined drought and heat stress in Camellia oleifera cultivars: leaf characteristics, soluble sugar and protein contents, and Rubisco gene expression. Trees 29:1483–1492

    Article  CAS  Google Scholar 

  • Winisdorffer G, Musse M, Quellec S, Barbacci A, Le Gall S, Mariette F, Lahaye M (2015) Analysis of the dynamic mechanical properties of apple tissue and relationships with the intracellular water status, gas distribution, histological properties and chemical composition. Postharvest Biol Tec 104:1–16

    Article  CAS  Google Scholar 

  • Wu Y, Thorne ET, Sharp RE, Cosgrove DJ (2001) Modification of expansin transcript levels in the maize primary root at low water potentials. Plant Physiol 126:1471–1479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu JC, Tian J, Belanger FC, Huang BR (2007) Identification and characterization of an expansin gene AsEXP1 associated with heat tolerance in C3 Agrostis grass species. J Exp Bot 58:3789–3796

    Article  CAS  PubMed  Google Scholar 

  • Xu Q, Xu X, Shi Y, Xu JC, Huang BR (2014) Transgenic tobacco plants overexpressing a grass PpEXP1 gene exhibit enhanced tolerance to heat stress. PLoS ONE 9:e100792

    Article  PubMed  PubMed Central  Google Scholar 

  • Yemets O, Gauslaa Y, Solhaug KA (2015) Monitoring with lichens–conductivity methods assess salt and heavy metal damage more efficiently than chlorophyll fluorescence. Ecol Indic 55:59–64

    Article  CAS  Google Scholar 

  • Zhang T, Li QL, Zhang LY (2014a) Expression characteristics of PwEXP1 gene in seed germination and adversity in Picea wilsonii. Sci Silva Sin 50:56–62

    CAS  Google Scholar 

  • Zhang W, Yan HW, Chen WJ, Liu JY, Jiang CP, Jiang HY, Zhu SW, Cheng BJ (2014b) Genome-wide identification and characterization of maize expansin genes expressed in endosperm. Mol Genet Genom 289:1061–1074

    Article  CAS  Google Scholar 

  • Zhang DD, Wang BN, Zhao JM, Zhao XB, Zhang LQ, Liu DC, Dong LL, Wang DW, Mao L, Li AL (2015) Divergence in homoeolog expression of the grain length-associated gene GASR7 during wheat allohexaploidization. Crop J 3:1–9

    Article  Google Scholar 

  • Zou HY, Wenwen YX, Zang GC, Kang ZH, Zhang ZY, Huang JL, Wang GX (2015) OsEXPB2, a β-expansin gene, is involved in rice root system architecture. Mol Breed 35:1–14

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank National Natural Science Foundation of China (31672189) and the Fundamental Research Funds for the Central Universities of China (2015ZCQ-SW-01) for funding support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Jichen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, Z., Qian, X., Xiao, X. et al. Transgenic tobacco plants expressing grass AstEXPA1 gene show improved performance to several stresses. Plant Biotechnol Rep 11, 331–337 (2017). https://doi.org/10.1007/s11816-017-0454-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-017-0454-7

Keywords

Navigation