Skip to main content
Log in

Enhanced adsorption of lead ions by enzymatically synthesized poly(m-phenylenediamine)-graphene oxide composites

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Adsorption is considered efficient for removing metal ions dissolved in aquatic environments. For the successful performance of adsorption processes, the development of adsorbents possessing high adsorption capacity is essential. Herein, we report the enzymatic synthesis of composites consisting of m-phenylenediamine polymer (pmPDA) and graphene oxide (GO) by laccase and the adsorption properties of these composites for Pb2+, a representative toxic metal ion. Especially, the composite synthesized with initial 1:1 mass ratio of m-phenylenediamine monomer and GO was found to have the largest adsorption capacity for Pb2+. The Langmuir isotherm for the adsorption of Pb2+ by GO, pmPDA, and this composite, respectively, revealed that the maximum adsorption capacity, qmax, of this composite was the highest (2,164 µmol/g) being almost four times higher than that for pmPDA (564.7 µmol/g). The qmax for GO was 984.3 µmol/g being about two times higher than for pmPDA but less than a half of qmax for this composite. The composite was estimated to contain 56.1 wt% of pmPDA as examined by thermogravimetric analysis. This study demonstrates that the combination of the high surface area of GO and the functionality of pmPDA can significantly enhance the adsorption capacity for Pb2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Fu and Q. Wang, J. Environ. Manage., 92, 407 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. R. K. Sharma and M. Agrawal, J. Environ. Biol., 26, 301 (2005).

    CAS  PubMed  Google Scholar 

  3. B. Alyuz and S. Veli, J. Hazard. Mater., 167, 482 (2009).

    Article  PubMed  Google Scholar 

  4. Y. S. Ho, J. Hazard. Mater., 136, 681 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. C. A. Martínez-Huitle and E. Brillas, Appl. Catal. B., 87, 105 (2009).

    Article  Google Scholar 

  6. A. K. Verma, R. R. Dash and P. Bhunia, J. Environ. Manage., 93, 154 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. A. W. Zularisam, A. F. Ismail and R. Salim, Desalination, 194, 211 (2006).

    Article  CAS  Google Scholar 

  8. I. Hajdu, M. Bodnár, Z. Csikós, S. Wei, L. Daróczi, B. Kovács, Z. Győri, J. Tamás and J. Borbély, J. Membr. Sci., 409, 44 (2012).

    Article  Google Scholar 

  9. S. Z. Mohammadi, M. A Karimi, D. Afzali and F. Mansouri, Desalination, 262, 86 (2010).

    Article  CAS  Google Scholar 

  10. M. R. Huang, Q. Y. Peng and X. G. Li, Chem. Eur. J., 12, 4341 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. G. Tolian, S. A. Jafari and S. Zarei, Water Pollut. Res. J. Can., 50, 109 (2015).

    Article  CAS  Google Scholar 

  12. B. Xiao and K. M. Thomas, Langmuir, 21, 3892 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. X. G. Li, M. R. Huang, W. Duan and Y. L. Yang, Chem. Rev., 102, 2925 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Z. Su, L. Zhang, L. Chai, H. Wang, W. Yu, T. Wang and J. Yang, New J. Chem., 38, 3984 (2014).

    Article  CAS  Google Scholar 

  15. W. Yu, L. Zhang, H. Wang and L. Chai, J. Hazard. Mater., 260, 789 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. M. J. Allen, V. C. Tung and R. B. Kaner, Chem. Rev., 110, 132 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. D. R. Dreyer, S. Park, C. W. Bielawski and R. S. Ruoff, Chem. Soc. Rev., 39, 228 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. H. Bai, K. Sheng, P. Zhang, C. Li and G. Shi, J. Mater. Chem., 21, 18653 (2011).

    Article  CAS  Google Scholar 

  19. S. Chen, J. Zhu, X. Wu, Q. Han and X. Wang, ACS Nano, 4, 2822 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. J. Lee, J. Kim, S. Kim and D. H. Min, Adv. Drug Deliv. Rev., 105, 275 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. X. D. Zhuang, Y. Chen, G. Liu, P. P. Li, C. X. Zhu, E. T. Kang, K. G. Noeh, B. Zhang, J.H. Zhu and Y.X. Li, Adv. Mater., 22, 1731 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. K. Ryu, H. Xue and J. Park, J. Chem. Technol. Biotechnol., 88, 788 (2013).

    Article  CAS  Google Scholar 

  23. W. Feng and P. Ji, Biotechnol. Adv., 29, 889 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. S. Kobayashi and A. Makino, Chem. Rev., 109, 5288 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. F. Zhang, B. Zheng, J. Zhang, X. Huang, H. Liu, S. Guo and J. Zhang, J. Phys. Chem. C., 114, 8469 (2010).

    Article  CAS  Google Scholar 

  26. J. Park, N. Raseda, E. S. Oh and K. Ryu, J. Appl. Polym. Sci., 133, 43307 (2016).

    Article  Google Scholar 

  27. Y. Xu, N. Raseda, I. K. Yoo and K. Ryu, Can. J. Chem. Eng., 97, 869 (2019).

    Article  CAS  Google Scholar 

  28. N. Raseda, J. Park and K. Ryu, Korean J. Chem. Eng., 33, 3011 (2016).

    Article  CAS  Google Scholar 

  29. V. H. Pham, T.V. Cuong, S. H. Hur, E. W. Shin, J. S. Kim, J. S. Chung and E. J. Kim, Carbon, 48, 1945 (2010).

    Article  CAS  Google Scholar 

  30. Y. Xu, I. K. Yoo, H. Lee and K. Ryu, Chem. Pap., 73, 1705 (2019).

    Article  CAS  Google Scholar 

  31. O. Nabinejad, D. Sujan, M. E. Rahman and I. J. Davies, J. Therm. Anal. Calorim., 122, 227 (2015).

    Article  CAS  Google Scholar 

  32. N. Deedar and I. Aslam, J. Environ. Sci., 21, 402 (2009).

    Article  Google Scholar 

  33. S. Luo, X. Xu, G. Zhou, C. Liu, Y. Tang and Y. Liu, J. Hazard. Mater., 274, 145 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. L. A. Bernal-Martínez, S. Hernández-López, C. Barrera-Díaz, F. Ureña-Núñez and B. Bilyeu, Ind. Eng. Chem. Res., 47, 1026 (2008).

    Article  Google Scholar 

  35. X. Yang, Y. Wan, Y. Zheng, F. He, Z. Yu, J. Huang, H. Wang, Y. S. Ok, Y. Jiang and B. Gao, Chem. Eng. J., 366, 608 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. R. P. Medina, E. T. Nadres, F. C. Ballesteros and D. F. Rodrigues, Environ. Sci. Nano., 3, 638 (2016).

    Article  CAS  Google Scholar 

  37. S. Ai, Y. Huang, C. Huang, W. Yu and Z. Mao, Environ. Sci. Pollut. Res., 28, 2728 (2021).

    Article  CAS  Google Scholar 

  38. S. Shahabuddin, C. Tashakori, M. A. Kamboh, Z. S. Korrani, R. Saidur, H. R. Nodeh and M. E. Bidhendi, Environ. Sci.: Water Res. Technol., 4, 549 (2018).

    CAS  Google Scholar 

  39. L. Fan, C. Luo, M. Sun, X. Li and H. Qiu, Colloids Surf. B., 103, 523 (2013).

    Article  CAS  Google Scholar 

  40. R. Ricco, K. Konstas, M. J. Styles, J. J. Richardson, R. Babarao, K. Suzuki, P. Scopece and P. Falcaro, J. Mater. Chem. A., 3, 19822 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1D1A1B07049850).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keungarp Ryu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhargawa, B., Xu, Y., Yoo, IK. et al. Enhanced adsorption of lead ions by enzymatically synthesized poly(m-phenylenediamine)-graphene oxide composites. Korean J. Chem. Eng. 39, 3048–3054 (2022). https://doi.org/10.1007/s11814-022-1207-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1207-z

Keywords

Navigation