Skip to main content

Advertisement

Log in

Improved reutilization of industrial crude lysine to 1,5-diaminopentane by enzymatic decarboxylation using various detergents and organic solvents

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

World-wide production of l-lysine has rapidly increased in recent years. In the industrial scale production, it is cost effective to minimize waste as many waste materials are generated during downstream processing. Therefore, the conversion of crude lysine to a more valuable product reduces waste emission. In this study, 1,5-diaminopentane (DAP, trivial name: cadaverine) was produced by l-lysine decarboxylation using Hafnia alvei. The conditions of enzymatic reaction were determined. In particular, the addition of specific detergent (Brij 56) was significantly affected in the bioconversion system. Addition of hydrophobic organic solvent improved the mixing of the reactants. Finally, an industrial crude form of lysine served as a substrate. The DAP conversion by analytical, feed and industrial crude l-lysine was 93.9%, 90.3%, and 63.8%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Kelle, T. Hermann and B. Bathe, l-lysine production, Handbook of Corynebacterium glutamicum, CRC Press, Florida (2005).

    Google Scholar 

  2. J. Evans, Commercial amino acids, BCC Research: Market Research Reports, BIO007L (2017). https://doi.org/www.bccresearch.com

    Google Scholar 

  3. M. Elder, World markets for fermentation ingredients, BCC Research: Market Research Reports, FOD020E (2018). https://doi.org/www.bccresearch.com

    Google Scholar 

  4. L. Eggeling and M. Bott, Appl. Microbiol. Biotechnol., 99, 3387 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. C. Wittmann and J. Becker, Microbiol. Monogr., 5, 39 (2007).

    Article  Google Scholar 

  6. K. E. Uffmann and M. Binder, US Patent, 6,340,486 (2002).

  7. J. Adkins, J. Jordan and D. R. Nielsen, Biotechnol. Bioeng., 110, 1726 (2015).

    Article  CAS  Google Scholar 

  8. S. Jeong, Y. J. Yeon, E. G. Choi, S. Byun, D. H. Cho, I. K. Kim and Y. H. Kim, Korean J. Chem. Eng., 33, 1530 (2016).

    Article  CAS  Google Scholar 

  9. C. G. Chae, Y. J. Kim, S. J. Lee, Y. H. Oh, J. E. Yang, J. C. Joo, K. H. Kang, Y.-A. Jang, H. Lee, A.-R. Park, B. K. Song, S.Y. Lee and S. J. Park, Biotechnol. Bioprocess Eng., 21, 169 (2016).

    Article  CAS  Google Scholar 

  10. N, Li, H. Chou, L. Yu and Y. Xu, Biotechnol. Bioprocess Eng., 19, 965 (2014).

    Article  CAS  Google Scholar 

  11. C. Wang, K. Zhang, C. Zhongjun, H. Cai and W. Honggui, Biotechnol. Bioprocess Eng., 20, 439 (2015).

    Article  CAS  Google Scholar 

  12. T. Tateno, Y. Okada, Y. Tsuchidate, T. Tanaka, H. Fukuda and A. Kondo, Appl. Microbiol. Biotechnol., 82, 115 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. F. Cassan, S. Maiale, O. Masciarelli, A. Vidal, V. Luna and O. Ruiz, Eur. J. Soil Biol., 45, 12 (2009).

    Article  CAS  Google Scholar 

  14. J.-H. Kim, H.-M. Seo, G. Sathiyanarayanan, S. K. Bhatia, H.-S. Song, J. Kim, J.-M. Jeon, J.-J. Yoon, Y.-G. Kim, K. Park and Y.-H. Yang, J. Ind. Eng. Chem., 46, 44 (2017).

    Article  CAS  Google Scholar 

  15. Y. Takatsuka, Y. Yamaguchi, M. Ono and Y. Kamio, J. Bacteriol., 182, 6732 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. U. Kanjee, I. Gutsche, E. Alexopoulos, B. Zhao, M. El Bakkouri, M. Thibault, K. Liu, S. Ramachandran, J. Snider, E. F. Pai and W. A. Houry, EMBO J., 30, 931 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. M. Abercrombie, In Vitro, 6, 128 (1970).

    Article  CAS  PubMed  Google Scholar 

  18. K. Han and O. Levenspiel, Biotechnol. Bioeng., 32, 430 (1987).

    Article  Google Scholar 

  19. Z. Velioglu and R.O. Urek, Biotechnol. Bioprocess Eng., 21, 430 (2017).

    Article  CAS  Google Scholar 

  20. M. Manaargadoo-Catin, A. Ali-Cherif, J. L. Pougnas and C. Perrin, Adv. Colloid Interface Sci., 228, 1 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. S.K. Hait and S. P. Moulik, J. Surfactants Deterg., 4, 303 (2001).

    Article  CAS  Google Scholar 

  22. D. Linke, Methods in Enzymol., 463, 603 (2009).

    Article  CAS  Google Scholar 

  23. S. Luche, V. Santoni and T. Rabilloud, Proteomics, 3, 249 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. S.B. Kim, H.Y. Yoo, J. S. Kim and S.W. Kim, Process Biochem., 49, 2203 (2014).

    Article  CAS  Google Scholar 

  25. C. Laane, S. Boeren, K. Vos and C. Veeger, Biotechnol. Bioeng., 30, 81 (1987).

    Article  CAS  PubMed  Google Scholar 

  26. J. L. Gu, H. F. Tong and L.Y. Sun, Biotechnol. Bioprocess Eng., 22, 76 (2017).

    Article  CAS  Google Scholar 

  27. T. Hermann, J. Biotechnol., 104, 155 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. A.-T. Nguyen and W.-S. Kim, Korean J. Chem. Eng., 34, 2002 (2017).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jung Rae Kim or Chulhwan Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Yoo, H.Y., Ki, Y.H. et al. Improved reutilization of industrial crude lysine to 1,5-diaminopentane by enzymatic decarboxylation using various detergents and organic solvents. Korean J. Chem. Eng. 35, 1854–1859 (2018). https://doi.org/10.1007/s11814-018-0075-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-018-0075-z

Keywords

Navigation