Skip to main content
Log in

Cadaverine production by heterologous expression of Klebsiella oxytoca lysine decarboxylase

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Cadaverine, as a biogenic amine, is an important platform chemical for the production of industrial polymers, such as polyamides, polyurethanes, and nylon. Previous efforts focused on the bio-based production of cadaverine using two lysine decarboxylases of Escherichia coli CadA and LdcC. In this study, we report the biotransformation of cadaverine using a lysine decarboxylase from Klebsiella oxytoca. Codon optimization of the gene encoding this enzyme was carried on for the heterologous expression in E. coli, which led to a system that converted more than 24% lysine-HCl to cadaverine compared to the same system expressing CadA. The system was further optimized by using three different inducible promoters to control the expression of lysine decarboxylase gene of K. oxytoca in E. coli. The final optimized system converted lysine-HCl to cadaverine at a conversion rate of 0.133%/min/g. When the optimized system described above is coupled to an industrial process, the combined process has the potential to produce cadaverine with high conversion efficiency (46%) from sugar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thielen, M. (2010) Bio-polyamides for automotive applications. Bioplastics Magazine 1: 10–11.

    Google Scholar 

  2. Brieger, L. (1885) Weitere Untersuchungen uber Ptomaine. August. Hirschwald, Berlin.

    Google Scholar 

  3. Sabo, D. L., E. A. Boeker, B. Byers, H. Waron, and E. H. Fisher (1974) Purification and physical properties of inducible Escherichia coli lysine decarboxylase. Biochem. 13: 662–670.

    Article  CAS  Google Scholar 

  4. Kikuchi, Y., H. Kojima, T. Tanaka, Y. Takatsuka, and Y. Kamio (1997) Characterization of a second lysine decarboxylase isolated from Escherichia coli. J. Bacteriol. 179: 4486–4492.

    CAS  Google Scholar 

  5. Lemonnier, M. and D. Lane (1998) Expression of the second lysine decarboxylase gene of Escherichia coli. Microbiol. 144: 751–760.

    Article  CAS  Google Scholar 

  6. Neely, M. N., C. L. Dell, and E. R. Olson (1994) Roles of LysP and CadC in mediating the lysine requirement for acid induction of the Escherichia coli cad Operon. J. Bacteriol. 176: 3278–3285.

    CAS  Google Scholar 

  7. Küper, C. and K. Jung (2005) CadC-mediated activation of the cadBA Promoter in Escherichia coli. J. Mol. Microb. Biotech. 10: 26–39.

    Article  Google Scholar 

  8. Krithika, G., J. Arunachalam, H. Priyanka, and K. Indulekha (2010) The two forms of lysine decarboxylase; Kinetics and effect of expression in relation to acid tolerance response in E. coli. J. Exp. Sci. 1: 10–21.

    Google Scholar 

  9. Mimitsuka, T., H. Sawai, M. Hatsu, and K. Yamada (2007) Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation. Biosci. Biotech. Bioch. 71: 2130–2135.

    Article  CAS  Google Scholar 

  10. Tateno, T., Y. Okada, T. Tsuchidate, T. Tanaka, H. Fukuda, and A. Kondo (2009) Direct production of cadaverine from soluble starch using Corynebacterium glutamicum coexpressing a-amylase and lysine decarboxylase. Appl. Microbiol. Biot. 82: 115–121.

    Article  CAS  Google Scholar 

  11. Kelle, R., B. Laufer, C. Brunzema, D. Weuster-Botz, R. Krämer, and C. Wandrey(1996) Reaction engineering analysis of L-lysine transport by Corynebacterium glutamicum. Biotechnol. Bioeng. 51: 40–50.

    Article  Google Scholar 

  12. Kalinowski, J., J. Cremer, B. Bachmann, L. Eggeling, H. Sahm, and A. Puhler (1991) Genetic and biochemical analysis of the aspartokinase from Corynebacterium glutamicum. Mol. Microbiol. 5: 1197–1204.

    Article  CAS  Google Scholar 

  13. Kind, S., W. K. Jeong, H. Schro der, and C. Wittmann (2010) Systems-wide metabolic pathway engineering in Corynebacterium glutamicum for bio-based production of diaminopentane. Metab. Eng. 12: 341–351.

    Article  CAS  Google Scholar 

  14. Kind, S., W. K. Jeong, H. Schröder, O. Zelder, and C. Wittmann (2010) Identification and elimination of the competing N-acetyldiaminopentane pathway for improved production of diaminopentane by Corynebacterium glutamicum. Appl. Environ. Microb. 76: 5175–5180.

    Article  CAS  Google Scholar 

  15. Qian, Z., X. Xia, and S. Y. Lee (2011) Metabolic engineering of Escherichia coli for the production of cadaverine: A five carbon diamine. Biotech. Bioeng. 108: 93–103.

    Article  CAS  Google Scholar 

  16. Na, D., S. M. Yoo, H. Chung, H. Park, J. H. Park, and S. Y. Lee (2013) Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nat. Biotechnol. 31: 170–174.

    Article  CAS  Google Scholar 

  17. Ozgul, F. and Y. Ozgul (2005) Formation of biogenic amines by Gram-negative rods isolated from fresh, spoiled, VP-packed and MAP-packed herring (Clupea harengus). Eur. Food Re. Technol. 221: 575–581.

    Article  Google Scholar 

  18. Leuchtenberger, W., K. Huthmacher, and K. Drauz (2005) Biotechnological production of amino acids and derivatives: Current status and prospects. Appl. Microbiol. Biot. 69: 1–8.

    Article  CAS  Google Scholar 

  19. Hoover, D. M. and J. Lubkowski (2002). DNAWorks: An automated method for designing oligonucleotides for PCR-based gene synthesis. Nucleic Acid. Res. 30: e43.

    Article  Google Scholar 

  20. Li, W., I. S. Ng, B. Fang, J. Yu, and G. Zhang (2011) Codon optimization of 1,3-propanediol oxidoreductase expression in Escherichia coli and enzymatic properties. Electron. J. Biotechn. 14: 4.

  21. Lee, S., B. Kim, M. Oh, Y. Kim, and J. Lee (2013) Enhanced activity of meso-secondary alcohol dehydrogenase from Klebsiella species by codon optimization. Bioproc. Biosyst. Eng. 36: 2005–1010.

    Google Scholar 

  22. Alper, H., C. Fischer, E. Nevoigt, and G. Stephanopoulos (2005) Tuning genetic control through promoter engineering. Proc. Nat. Acad. Sci. USA. 102: 12678–12683.

    Article  CAS  Google Scholar 

  23. Kim, S. W. and J. D. Keasling (2001) Metabolic engineering of the nonmevalonate isopentenyl diphosphate synthesis pathway in Escherichia coli enhances lycopene production. Biotechnol. Bioeng. 72: 408–415.

    Article  CAS  Google Scholar 

  24. Thakker, C., J. Zhu, K. Y. San, and G. Bennett (2011) Heterologous pyc gene expression under various natural and engineered promoters in Escherichia coli for improved succinate production. J. Biotechnol. 155: 236–243.

    Article  CAS  Google Scholar 

  25. Amann, E., J. Brosius, and M. Ptashne (1983) Vectors bearing a hybrid trp-lac promoter useful for regulated expression of cloned genes in Escherichia coli. Gene 25: 167–178.

    Article  CAS  Google Scholar 

  26. Soisson, S. M., B. MacDougall-Shackleton, R. Schleif, and C. Wolberger (1997) Structural basis for ligand-regulated oligomerization of AraC. Sci. 276: 421–425.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Naiqiang Li or Yan Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, N., Chou, H., Yu, L. et al. Cadaverine production by heterologous expression of Klebsiella oxytoca lysine decarboxylase. Biotechnol Bioproc E 19, 965–972 (2014). https://doi.org/10.1007/s12257-014-0352-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-014-0352-6

Keywords

Navigation