Skip to main content

Advertisement

Log in

Zeaxanthin production by Paracoccus zeaxanthinifaciens ATCC 21588 in a lab-scale bubble column reactor: Artificial intelligence modelling for determination of optimal operational parameters and energy requirements

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The operational optimization of zeaxanthin production by Paracoccus zeaxanthinifaciens ATCC 21588 in a bubble column reactor was performed by coupling genetic algorithm (GA) to an artificial neural network (ANN) model developed using experimental one-variable-at-a-time (OVAT) results. The effects of varying air flow rate (2-5 vvm) and inoculum size (4 and 8%) for different incubation time (30-80 h) were evaluated. Volumetric power input (P/V L ) and energy input (E) to the bubble column were then correlated with the ANN-GA optimized conditions. A maximum zeaxanthin production of 13.76±0.14 mg/L was observed at 4 vvm using an inoculum size of 4% (v/v) after 60 h of incubation in OVAT experiments with corresponding P/V L value of 231.57 W/m3 reflecting an energy consumption of 50.02 kJ during the fermentation period. The ANN based GA optimization predicted a maximum zeaxanthin production of 14.79 mg/L at 3.507 vvm, 4% inoculum size and 55.83 h against the experimental production of 15.09±0.51 mg/L corresponding to a P/V L value of 202.03 W/m3 reflecting to a significantly reduced energy input (40.01 kJ). The proposed OVAT based ANN-GA optimization approach can be used to simulate similar studies involving microbial fermentation in bioreactors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. Ribaya-Mercado and J. B. Blumberg, J. Am. Coll. Nutr., 23, 567S (2004).

    Article  CAS  Google Scholar 

  2. E. Loane, J. M. Nolan, O. O’Donovan, P. Bhosale, P. S. Bernstein and S. Beatty, Surv. Ophthalmol., 53, 68 (2008).

    Article  Google Scholar 

  3. R. L. Roberts, J. Green and B. Lewis, Clin. Dermatol., 27, 195 (2009).

    Article  Google Scholar 

  4. S. M. Moeller, P. F. Jacques and J. B. Blumberg, J. Am. Coll. Nutr., 19, 522S (2000).

    Article  CAS  Google Scholar 

  5. P. Thawornwiriyanun, S. Tanasupawat, C. Dechsakulwatana, S. Techkarnjanaruk and W. Suntornsuk, Appl. Biochem. Biotechnol., 167, 2357 (2012).

    Article  CAS  Google Scholar 

  6. M. Y. Victor and S. K. Bhatia, Biotechnol. Lett., 34, 1405 (2012).

    Article  Google Scholar 

  7. Y. T. Cheng and C. F. Yang, J. Taiwan Inst. Chem. Eng., 61, 270 (2016).

    Article  CAS  Google Scholar 

  8. A. Berry, D. Janssens, M. Hümbelin, J. P. Jore, B. Hoste, I. Cleenwerck, M. Vancanneyt, W. Bretzel, A. F. Mayer, R. Lopez-Ulibarri and B. Shanmugam, Int. J. Syst. Evol. Microbiol., 53, 231 (2003).

    Article  CAS  Google Scholar 

  9. A. J. Schocher and O. Wiss, US Patent, 3,891,504 (1975).

    Google Scholar 

  10. P.M. Doran, Bioprocess engineering principles, Academic Press, London (1995).

    Google Scholar 

  11. K. Nanou, T. Roukas and E. Papadakis, Biochem. Eng. J., 54, 172 (2011).

    Article  CAS  Google Scholar 

  12. K. Nanou, T. Roukas and E. Papadakis, Biochem. Eng. J., 67, 203 (2012).

    Article  CAS  Google Scholar 

  13. P. F. Stanbury, A. Whitaker and S. J. Hall, Principles of fermentation technology, Elsevier (2013).

    Google Scholar 

  14. L.M. Hao, L.Z. Xing, J.C. Zhang, J.X. Sun, S.R. Jia, C.S. Qiao and T. Wu, Appl. Biochem. Biotechnol., 160, 621 (2010).

    Article  CAS  Google Scholar 

  15. D. Dursun and A.C. Dalgiç, Biocatal. Agric. Biotechnol., 7, 1 (2016).

    Google Scholar 

  16. E.B. Eryilmaz, D. Dursun and A.C. Dalgiç, Biocatal. Agric. Biotechnol., 7, 224 (2016).

    Google Scholar 

  17. K.R. Pandey, C. Joshi and B.V. Vakil, SpringerPlus, 5, 1654 (2016).

    Article  Google Scholar 

  18. C. H. Kuo, T. A. Liu, J. H. Chen, C. M. J. Chang and C. J. Shieh, Biocatal. Agric. Biotechnol., 3, 1 (2014).

    Google Scholar 

  19. A.A. Babaei, A. Khataee, E. Ahmadpour, M. Sheydaei, B. Kakavandi and Z. Alaee, Korean J. Chem. Eng., 33, 1352 (2016).

    Article  CAS  Google Scholar 

  20. D. Singh and G. Kaur, Bioproc. Biosyst. Eng., 37, 1599 (2014).

    Article  CAS  Google Scholar 

  21. M. Zafar, S. Kumar and A. K. Dhiman, Biocatal. Agric. Biotechnol., 1, 70 (2012).

    CAS  Google Scholar 

  22. A.A. Prabhu, B. Mandal and V.V. Dasu, Korean J. Chem. Eng., 34, 1109 (2017).

    Article  CAS  Google Scholar 

  23. P. Kundu and I. M. Mishra, Desalination Water Treat., 57, 19713 (2016).

    Article  CAS  Google Scholar 

  24. S.M. Huang, C. H. Kuo, C. A. Chen, Y. C. Liu and C. J. Shieh, Ultrason. Sonochem., 36, 112 (2017).

    Article  CAS  Google Scholar 

  25. Z. Ilbay, S. Sahin and K. Büyükkabasakal, Korean J. Chem. Eng., 31, 1661 (2014).

    Article  CAS  Google Scholar 

  26. P. Kundu, V. Paul, V. Kumar and I. M. Mishra, Chem. Eng. Res. Des., 104, 773 (2015).

    Article  CAS  Google Scholar 

  27. P. Kundu, V. Paul, V. Kumar and I. M. Mishra, Petrol. Sci. Technol., 34, 350 (2016).

    Article  CAS  Google Scholar 

  28. E.M. E.M. Shokir, E. S. Al-Homadhi, O. Al-Mahdy and A. A.H. El-Midany, Korean J. Chem. Eng., 31, 1496 (2014).

    Article  CAS  Google Scholar 

  29. P. Davoodi, S. M. Ghoreishi and A. Hedayati, Korean J. Chem. Eng., 34, 854 (2017).

    Article  CAS  Google Scholar 

  30. M.G. Sajilata, M.V. Bule, P. Chavan, R. S. Singhal and M.Y. Kamat, Sep. Purif. Technol., 71, 173 (2010).

    Article  CAS  Google Scholar 

  31. C. Joshi and R. S. Singhal, Biocatal. Agric. Biotechnol., 8, 228 (2016).

    Google Scholar 

  32. D. S. Savic, M. L. Lazic, V.B. Veljkovic and M. M. Vrvic, Chem. Ind. Chem. Eng., 11, 59 (2005).

    Article  CAS  Google Scholar 

  33. K. Hirasawa and A. Tsubokura, U.S. Patent, 8,853,460 (2014).

    Google Scholar 

  34. J. Hirschberg and M. Harker, U.S. Patent, 5,935,808 (1999).

    Google Scholar 

  35. S. Rosa-Putra, A. Hemmerlin, J. Epperson, T. J. Bach, L. H. Guerra and M. Rohmer, FEMS Microbiol. Lett., 204, 347 (2001).

    Article  CAS  Google Scholar 

  36. V. Ferreira, M.D.O. Faber, S.D. S. Mesquita and N. Pereira Jr., Electron. J. Biotechnol., 13, 5 (2010).

    Article  Google Scholar 

  37. D. S. Clark and H.W. Blanch, Biochemical Engineering, CRC Press (1997).

    Google Scholar 

  38. P. Bhosale, A. J. Larson and P.S. Bernstein, J. Appl. Microbiol., 96, 623 (2004).

    Article  CAS  Google Scholar 

  39. R. Verwaal, Y. Jiang, J. Wang, J. M. Daran, G. Sandmann, J. A. van den Berg and A. J. van Ooyen, Yeast, 27, 983 (2010).

    Article  CAS  Google Scholar 

  40. R. Doshi, T. Nguyen and G. Chang, PNAS, 110, 7642 (2013).

    Article  CAS  Google Scholar 

  41. S. Prabhu, P.D. Rekha, C. C. Young, A. Hameed, S.Y. Lin and A. B. Arun, Appl. Biochem. Biotechnol., 171, 817 (2013).

    Article  CAS  Google Scholar 

  42. C. Sandhya, A. Sumantha, G. Szakacs and A. Pandey, Process Biochem., 40, 2689 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chetan Joshi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, C., Singhal, R.S. Zeaxanthin production by Paracoccus zeaxanthinifaciens ATCC 21588 in a lab-scale bubble column reactor: Artificial intelligence modelling for determination of optimal operational parameters and energy requirements. Korean J. Chem. Eng. 35, 195–203 (2018). https://doi.org/10.1007/s11814-017-0253-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0253-4

Keywords

Navigation