Skip to main content

Advertisement

Log in

Medium optimization for high yield production of extracellular human interferon-γ from Pichia pastoris: A statistical optimization and neural network-based approach

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Medium development for high level expression of human interferon gamma (hIFN-γ) from Pichia pastoris (GS115) was performed with the aid of statistical and nonlinear modeling techniques. In the initial screening, gluconate and glycine were found to be key carbon and nitrogen sources, showing significant effect on production of hIFN-γ. Plackett-Burman screening revealed that medium components., gluconate, glycine, KH2PO4 and histidine, have a considerable impact on hIFN-γ production. Optimization was further proceeded with Box-Behnken design followed by artificial neural network linked genetic algorithm (ANN-GA). The maximum production of hIFN-γ was found to be 28.48mg/L using Box-Behnken optimization (R2=0.98), whereas the ANN-GA based optimization had displayed a better production rate of 30.99mg/L (R2=0.98), with optimal concentration of gluconate=50 g/L, glycine=10.185 g/L, KH2PO4=35.912 g/L and histidine 0.264 g/L. The validation was carried out in batch bioreactor and unstructured kinetic models were adapted. The Luedeking-Piret (L-P) model showed production of hIFN-γ was mixed growth associated with the maximum production rate of 40mg/L of hIFN-γ production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. W. Gray and D. V. Goeddel, Nature, 298, 859 (1982).

    Article  CAS  Google Scholar 

  2. H. M. Younes and B. G. Amsden, J. Pharm. Sci., 91, 2 (2002).

    Article  CAS  Google Scholar 

  3. S. Macauley-Patrick, M. L. Fazenda, B. M. Neil and L. M. Harvey, Yeast, 22, 249 (2005).

    Article  CAS  Google Scholar 

  4. O. Cos, R. Ramón, J. L. Montesinos and F. Valero, Microb. Cell Factories, 5, 17 (2006).

    Article  Google Scholar 

  5. A. Idiris, H. Tohda, H. Kumagai and K. Takegawa, Appl. Microbiol. Biotechnol., 86, 403 (2010).

    Article  CAS  Google Scholar 

  6. B. A. Plantz, J. Sinha, L. Villarete, K. W. Nickerson and V. L. Schlegel, Appl. Microbiol. Biotechnol., 72, 297 (2006).

    Article  CAS  Google Scholar 

  7. G. Potvin, A. Ahmad and Z. Zhang, Biochem. Eng. J., 64, 91 (2012).

    Article  CAS  Google Scholar 

  8. W. Zhang, H. Liu and J. Chen, Biochem. Eng. J., 12, 1 (2002).

    Article  Google Scholar 

  9. W. Zhang, J. Sinha and M. M. Meagher, Appl. Microbiol. Biotechnol., 72, 139 (2006).

    Article  CAS  Google Scholar 

  10. A. Ghosalkar, V. Sahai and A. Srivastava, Bioresour. Technol., 99, 7906 (2008).

    Article  CAS  Google Scholar 

  11. A. Solà, H. Maaheimo, K. Ylönen, P. Ferrer and T. Szyperski, Eur. J. Biochem., 271, 2462 (2004).

    Article  Google Scholar 

  12. R. A. Brierley, C. Bussineau, R. Kosson, A. Melton and R. S. Siegel, Ann. N. Y. Acad. Sci., 589, 350 (1990).

    Article  CAS  Google Scholar 

  13. E. D. Thorpe, M. C. d’Anjou and A. J. Daugulis, Biotechnol. Lett., 21, 669 (1999).

    Article  CAS  Google Scholar 

  14. J. Xie, Q. Zhou, P. Du, R. Gan and Q. Ye, Enzyme Microb. Technol., 36, 210 (2005).

    Article  CAS  Google Scholar 

  15. “Exploring the Metabolic and Genetic Control of Gene Expression on a Genomic Scale | Science.” Available: http://science.sciencemag.org/content/278/5338/680.long (2016).

  16. B. Magasanik, Cold Spring Harb. Monogr. Arch., 21, 283 (1992).

    Google Scholar 

  17. V. V. Dasu and T. Panda, Bioprocess Eng., 22, 45 (2000).

    Article  CAS  Google Scholar 

  18. C. Sivapathasekaran, S. Mukherjee, A. Ray, A. Gupta and R. Sen, Bioresour. Technol., 101, 2884 (2010).

    Article  CAS  Google Scholar 

  19. Y. Yu, X. Zhou, S. Wu, T. Wei and L. Yu, Electron. J. Biotechnol., 17, 311 (2014).

    Article  CAS  Google Scholar 

  20. S. Kumar, K. Pakshirajan and V. V. Dasu, Appl. Microbiol. Biotechnol., 84, 477 (2009).

    Article  CAS  Google Scholar 

  21. Y. Yasin, F. B. H. Ahmad, M. Ghaffari-Moghaddam and M. Khajeh, Environ. Nanotechnol. Monit. Manag., 1, 2 (2014).

    Article  Google Scholar 

  22. A. A. Prabhu, V. D. Veeranki and S. J. Dsilva, Process Biochem., 51, 709 (2016).

    Article  CAS  Google Scholar 

  23. R. L. Plackett and J. P. Burman, Biometrika., 33, 305 (1946).

    Article  Google Scholar 

  24. G. E. P. Box and D. W. Behnken, Technometrics., 2, 455 (1960).

    Article  Google Scholar 

  25. J. P. Maran, S. Manikandan, B. Priya and P. Gurumoorthi, J. Food Sci. Technol., 52, 92 (2013).

    Article  Google Scholar 

  26. X. Song, A. Mitnitski, C. MacKnight and K. Rockwood, J. Am. Geriatr. Soc., 52, 1180 (2004).

    Article  Google Scholar 

  27. K. M. Desai, S. A. Survase, P. S. Saudagar, S. S. Lele and R. S. Singhal, Biochem. Eng. J., 41, 266 (2008).

    Article  CAS  Google Scholar 

  28. M. Khayet and C. Cojocaru, Sep. Purif. Technol., 86, 171 (2012).

    Article  CAS  Google Scholar 

  29. P. Christova, K. Todorova, I. Timtcheva, G. Nacheva, A. Karshikoff and P. Nikolov, Zeitschrift Für Naturforschung., 58, 288 (2003).

    CAS  Google Scholar 

  30. C. Jungo, J. Schenk, M. Pasquier, I. W. Marison and U. von Stockar, J. Biotechnol., 131, 57 (2007).

    Article  CAS  Google Scholar 

  31. D. Bianchi, O. Bertrand, K. Haupt and N. Coello, Enzyme Microb. Technol., 28, 754 (2001).

    Article  CAS  Google Scholar 

  32. J. H. Choi and S. Y. Lee, Appl. Microbiol. Biotechnol., 64, 625 (2004).

    Article  CAS  Google Scholar 

  33. J. Yang, T. Moyana, S. MacKenzie, Q. Xia and J. Xiang, Appl. Environ. Microbiol., 64, 2869 (1998).

    CAS  Google Scholar 

  34. W. Klöckner and J. Büchs, Trends Biotechnol., 30, 307 (2012).

    Article  Google Scholar 

  35. J. Batra, D. Beri and S. Mishra, Appl. Biochem. Biotechnol., 172, 380 (2013).

    Article  Google Scholar 

  36. K. Sreekrishna, R. G. Brankamp, K. E. Kropp, D. T. Blankenship, J.-T. Tsay, P. L. Smith, J. D. Wierschke, A. Subramaniam and L. A. Birkenberger, Gene, 190, 55 (1997).

    Article  CAS  Google Scholar 

  37. S. Hu, L. Li, J. Qiao, Y. Guo, L. Cheng and J. Liu, Protein Expr. Purif., 47, 249 (2006).

    Article  CAS  Google Scholar 

  38. A. A. Prabhu, S. Chityala, Y. Garg and V. V. Dasu, Prep. Biochem. Biotechnol., 1, 1 (2016).

    Article  Google Scholar 

  39. A. A. Prabhu and A. Jayadeep, Prep. Biochem. Biotechnol., 1 (2016).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veeranki Venkata Dasu.

Electronic supplementary material

11814_2016_358_MOESM1_ESM.pdf

Medium optimization for high yield production of extracellular human interferon-γ from Pichia pastoris: A statistical optimization and neural network-based approach

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prabhu, A.A., Mandal, B. & Dasu, V.V. Medium optimization for high yield production of extracellular human interferon-γ from Pichia pastoris: A statistical optimization and neural network-based approach. Korean J. Chem. Eng. 34, 1109–1121 (2017). https://doi.org/10.1007/s11814-016-0358-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0358-1

Keywords

Navigation