Skip to main content
Log in

A novel approach for olive leaf extraction through ultrasound technology : Response surface methodology versus artificial neural networks

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Response surface methodology (RSM) and artificial neural network (ANN) were used to evaluate the ultrasound-assisted extraction (UAE) of polyphenols from olive leaves. To investigate the effects of independent parameters on total phenolic content (TPC) in olive leaves, pH (3–11), extraction time (20–60 min), temperature (30–60 °C) and solid/solvent ratio (500 mg/10–20 mL) were selected. RSM and ANN approaches were applied to determine the best possible combinations of these parameters. Box-Behnken design model was chosen for designing the experimental conditions through RSM. The second-order polynomial models gave a satisfactory description of the experimental data. Experimental parameters and responses were used to train the multilayer feed-forward networks with MATLAB. ANN proved to have higher prediction accuracy than that of RSM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Le Floch, M. T. Tena, A. Ríos and M. Valcárcel, Talanta, 46, 1123 (1998).

    Article  Google Scholar 

  2. B. Dimitrious, Trends Food Sci. Technol., 17, 505 (2006).

    Article  Google Scholar 

  3. S. Luengthanaphol, D. Mongkholkhajornsilp, S. Douglas, P. L. Douglas, L. Pengsopa and S. Pongamphai, J. Food Eng., 63, 247 (2004).

    Article  Google Scholar 

  4. M.T. Tena, M. Valcàrcel, P. J. Hidalgo and J. L. Ubera, Anal. Chem., 69, 521 (1997).

    Article  CAS  Google Scholar 

  5. D. Grigonis, P. R. Venskutonis, B. Sivik, M. Sandahl and C. S. Eskilsson, J. Supercrit. Fluid., 33, 223 (2005).

    Article  CAS  Google Scholar 

  6. N. Balasundram, K. Sundram and S. Samman, Food Chem., 99, 191 (2006).

    Article  CAS  Google Scholar 

  7. N. Gökalp, Doğal antioksidanlar, Tezsiz Yüksek Lisans Dönem Projesi, Ankara üniversitesi Fen Bilimleri Enstitüsü, Ankara (2006).

    Google Scholar 

  8. E. A. Hayouni, M. Abedrabba, M. Bouix and M. Hamdi, Food Chem., 105, 1126 (2007).

    Article  CAS  Google Scholar 

  9. C. Soler-Rivas, J.C. Espin and H. J. Wichers, J. Sci. Food Agr., 80, 1013 (2000).

    Article  CAS  Google Scholar 

  10. O. H. Lee, B. Y. Lee, J. Lee, H. B. Lee, J. Y. Son, C. S. Park, K. Shetty and Y. C. Kim, Bioresour. Technol., 100, 6107 (2009).

    Article  CAS  Google Scholar 

  11. S. N. El and S. Karakaya, Nutr. Rev., 67, 632 (2009).

    Article  Google Scholar 

  12. G. A. Cordell, Phytochemistry, 55, 463 (2000).

    Article  CAS  Google Scholar 

  13. S. Albu, E. Joyce, L. Paniwmyk, J. P. Lorimer and T. J. Mason, Ultrason. Sonochem., 11, 261 (2004).

    Article  CAS  Google Scholar 

  14. E. Aehle, S. R-Le. Grandic, R. Ralainirina, S. Baltora-Rosset, F. Mesnard, C. Prouillet, J. C. Mazière and M. A. Fliniaux, Food Chem., 86, 579 (2004).

    Article  CAS  Google Scholar 

  15. W. Peschel, F. Sánchez-Rabaneda, W. Diekmann, A. Plescher, I. Gartzía, D. Jiménez, R. Lamuela-Raventós, S. Buxaderas and C. Codina, Food Chem., 97, 137 (2006).

    Article  CAS  Google Scholar 

  16. L. Zare, S. Esmaeili-Mahani, M. Abbasnejad, B. Rasoulian, V. Sheibani, H. Sahraei and A. Kaeidi, Phytother Res., 26, 1731 (2012).

    Article  CAS  Google Scholar 

  17. J. Wainstein, T. Ganz, M. Boaz, Y. B. Dayan, E. Dolev, Z. Kerem and Z. Madar, J. Med. Food, 15, 605 (2012).

    Article  Google Scholar 

  18. S. Milanizadeh, M. R. Bigdeli, B. Rasoulian and D. Amani, Thrita., 3, e12914 (2014).

    Article  Google Scholar 

  19. K. Issazadeh and M. A. Aliabadi, Advanced Studies in Biology, 4, 397 (2012).

    Google Scholar 

  20. Y. Shen, S. J. Song, N. Keum and T. Park, Evid. Based Complement. Alternat. Med., 2014 (2014), DOI:10.1155/2014/971890.

  21. R. H. Myers, D.C. Montgomery, G.G. Vining, C. M. Borror and S. M. Kowalski, J. Quality Technol., 36, 53 (2004).

    Google Scholar 

  22. J.M. Zurada, Introduction to Artifical Neural Systems, West Publishing Company, St. Paul, MN (1992).

    Google Scholar 

  23. O. Razbani and M. Assadi, J. Power Sources, 246, 581 (2014).

    Article  CAS  Google Scholar 

  24. D. Bastani, M. E. Hamzehie, F. Davardoost, S. Mazinani and A. Poorbashiri, Fluid Phase Equilib., 354, 6 (2013).

    Article  CAS  Google Scholar 

  25. S. K. Doherty, J. B. Gomm and D. Williams, Comput. Chem. Eng., 21, 327 (1996).

    Article  Google Scholar 

  26. J. L. Dirion, M. Cabassud, G. Casamatta and M.V. Le Lann, Expert Systems, 2, 443 (2002).

    Article  Google Scholar 

  27. N. S. A. Malik and J.M. Bradford, SciHortic-Amsterdam, 110, 274 (2006).

    Article  CAS  Google Scholar 

  28. J. Lawson, Design and analysis of experiments with SAS, CRC Press, Taylor & Francis Group (2010).

    Google Scholar 

  29. G. Vining and S. Kowalski, Statistical methods for engineers, 3rd Ed. (2010).

    Google Scholar 

  30. J. Miles and M. Shevlin, Applying regression and correlation: A Guide for students and researchers, Sage Publications Ltd., London (2005).

    Google Scholar 

  31. N. R. Draper and J. A. John, Technometrics, 30, 423 (1998).

    Article  Google Scholar 

  32. J. C. Principe, N. R. Euliano and W. C. Lefebvre, Neural and adaptive systems: Fundamentals through simulations, John Wiley & Sons Inc., New York (2000).

    Google Scholar 

  33. S. Wang, F. Chen, J. Wu, Z. Wang, X. Liao and X. Hu, J. Food Eng., 78, 693 (2007).

    Article  CAS  Google Scholar 

  34. S. Mylonaki, E. Kiassos, D. P. Makris and P. Kefalas, Anal. Bioanal. Chem., 392, 977 (2008).

    Article  CAS  Google Scholar 

  35. T. G. McCloud, Molecules, 15, 4526 (2010).

    Article  CAS  Google Scholar 

  36. K. K. Chew, S.Y. Ng, Y.Y. Thoo, M. Z. Khoo, W.M. Wan Aida and C.W. Ho, Int. Food Res., 18, 571 (2011).

    CAS  Google Scholar 

  37. Y. Y Thoo, S. K. Ho, J. Y. Liang, C.W. Ho and C. P. Tan, Food Chem., 120, 290 (2010).

    Article  CAS  Google Scholar 

  38. G. H. Crapiste, F. A.R. Oliveira and V. Gekas, Engineering and Food for the 21st Century, CRC Press (2002).

    Google Scholar 

  39. N. Ruenroengklin, J. Zhong, X. Duan, B. Yang, J. Li and Y. Jiang, Int. J. Mol. Sci., 9, 1333 (2008).

    Article  CAS  Google Scholar 

  40. J. Tabart, C. Kevers, A. Sipel, J. Pincemail, J. O. Defraigne and J. Dommes, Food Chem., 105, 1268 (2007).

    Article  CAS  Google Scholar 

  41. A. N. Gorban, H. P. Sargsyan and H. A. Wahab, Math. Model. Nat. Phenom., 6, 184 (2011).

    Article  Google Scholar 

  42. T. Juntachote, R. Berghofer, F. Bauer and S. Siebenhandl, Int. J. Food Sci. Technol., 41, 121 (2006).

    Article  CAS  Google Scholar 

  43. E.M. Silva, H. Rogezand and Y. Larondelle, Sep. Purif. Technol., 55, 381 (2007).

    Article  CAS  Google Scholar 

  44. G. Pan, J. Qiao, C. Zhu and F. Wang, International Conference on Computer Distributed Control and Intelligent Environmental Monitoring (2011).

    Google Scholar 

  45. C. H. Zhu, F. P. Lu, Z. L. Han and L. X. Du, J. Ind. Microbiol. Biotechnol., 34, 271 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selin Şahin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

İlbay, Z., Şahin, S. & Büyükkabasakal, K. A novel approach for olive leaf extraction through ultrasound technology : Response surface methodology versus artificial neural networks. Korean J. Chem. Eng. 31, 1661–1667 (2014). https://doi.org/10.1007/s11814-014-0106-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0106-3

Keywords

Navigation