Skip to main content

Advertisement

Log in

Supercritical carbon dioxide extraction of oil from Thunnus tonggol head by optimization of process parameters using response surface methodology

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Total oil was extracted from ground fish head of Longtail tuna (Thunnus tonggol) using supercritical carbon dioxide (SC-CO2) at 20 to 40 MPa, 45 to 65 °C and 1 to 3 ml min−1. Response surface methodology (RSM) was employed to optimize the operating conditions of the SC-CO2 technique where the highest oil yield was obtained (35.6% on dry weight basis) at 40 MPa, 65 °C, and 3 ml min−1. The solubility of the oil in SC-CO2 increased from 2.9 to 14.2 g oil/100 g of CO2 with increasing pressure and temperature. The total saturated, monounsaturated and polyunsaturated fatty acids obtained were 41.6, 24.7 and 26.8%, respectively, where the omega-3 fatty acids were found to be 22.3%. A correlation was developed determining the coefficients of the second-order polynomial equation where the extraction parameters of SC-CO2 method to extract fish oil from fish sample were successfully optimized using response surface methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. FAO, Fish and fishery products, June (2008).

    Google Scholar 

  2. DOF, Annual fisheries statistics, Malaysia (2011).

    Google Scholar 

  3. K. J. Babbit, Intrinsic Quality and Species of North Pacific Fish, in Making Profits Out of Seafood Wastes, Edited by S. Keller, Proceedings of the International Conference on Fish By-Products, Anchorage, AK, April 25–27 (1990).

    Google Scholar 

  4. H. Saito, Y. Seike, H. Ioka, K. Osako, M. Tanaka, A. Takashima, J.M. Keriko and J. C. R. Souza, Lipids, 40, 941 (2005).

    Article  CAS  Google Scholar 

  5. S. Chantachum, S. Benjakul and N. Sriwirat, Food Chem., 69, 289 (2000).

    Article  CAS  Google Scholar 

  6. R. Uauy and A. Valenzuela, Marine oils. The health benefits of n-3 fatty acids, 16, 680 (2000).

    CAS  Google Scholar 

  7. A.P. Bimbo, Production of fish oil, In M. E. Stansby, Fish oil in nutrition, New York, Reinhold Publishing Co., Ltd., 141 (1990).

    Google Scholar 

  8. C. F. Moffat, A. S. McGill, R. Hardy and R. S. Anderson, J. Am. Oil Chem. Soc., 70, 133 (1993).

    Article  CAS  Google Scholar 

  9. M. Linder, J. Fanni and M. Parmentier, Mar. Biotechnol., 7(1), 70 (2005).

    Article  CAS  Google Scholar 

  10. G. E. Yang, Q. Yang, J.B. Zhao, Z. Z. Liu and B. Niu, J. Shanxi Med. Univ., 32, 31 (2001).

    CAS  Google Scholar 

  11. N. T. Dunford, F. Temelli and E. LeBlanc, J. Food Sci., 62, 289 (1997).

    Article  CAS  Google Scholar 

  12. C. Da Porto, D. Voinovich, D. Decorti and A. Natolino, J. Supercrit. Fluids, 68, 45 (2012).

    Article  Google Scholar 

  13. G. Zahedi and A. Azarpour, J. Supercrit. Fluids, 58, 40 (2011).

    Article  CAS  Google Scholar 

  14. G. Liu, X. Xu, Q. Hao and Y. Gao, LWT-Food Sci. Technol., 42, 1491 (2009).

    Article  CAS  Google Scholar 

  15. X. Xu, Y. Gao, G. Liu, Q. Wang and J. Zhao, LWT-Food Sci. Technol., 41, 1223 (2008).

    Article  CAS  Google Scholar 

  16. P. Shao, P. Sun and Y. Ying, Food Bioprod. Process., 86, 227 (2008).

    Article  CAS  Google Scholar 

  17. L. Danh, T. Mammucari, R. P. Truong and N. Foster, Chem. Eng. J., 155, 617 (2009).

    Article  CAS  Google Scholar 

  18. AOAC, 18th Ed., (W. Horwitz, Ed.), AOAC, Inc., Arlington, VA (2007).

  19. AOCS, 5th Ed., Firestone D. (Ed.), AOCS Inc. Champaign, IL (2004).

  20. N. A. N. Norulaini, O. Anuar, F.M. A. Abbas, M. O. Fatehah, A. K. M. Omar, F. Sahena and I. S. M. Zaidul, Food Bioprod. Process., 87, 152 (2009).

    Article  CAS  Google Scholar 

  21. F. Sahena, I. S.M. Zaidul, S. Jinap, M.H. A. Jahurul, A. Khatib and N. A. N. Norulaini, J. Food Eng., 99, 63 (2010).

    Article  CAS  Google Scholar 

  22. I. Aidos, S. Masbernat-Martinez, J. B. Luten, R.M. Boom and A. V. D. Padt, J. Agric. Food Chem., 50, 2818 (2002).

    Article  CAS  Google Scholar 

  23. P. Vlieg and T. Murray, NZJ Mar. Freshwater Res., 22(4), 491 (1988).

    Article  Google Scholar 

  24. A. P. Bimbo, Guidelines for characterizing food-grade fish oils, 9,5, Hertfordshire, UK (1998).

    Google Scholar 

  25. J. M. Snyder, J. P. Friedrich and D. D. Christianson, J. Am. Oil. Chem. Soc., 61, 1851 (1984).

    Article  CAS  Google Scholar 

  26. C. Devittori, D. Gumy, A. Kusy, L. Colarow, C. Bertoli and P. Lambelet, J. Am. Oil. Chem. Soc., 77, 573 (2000).

    Article  CAS  Google Scholar 

  27. F. Temelli, J. Supercrit. Fluids, 47, 583 (2009).

    Article  CAS  Google Scholar 

  28. Z.-J. Wei, A.-M. Liao, H.-X. Zhang, J. Liu and S. T. Jiang, Bioresour. Technol., 100, 4219 (2009).

    Google Scholar 

  29. I. S.M. Zaidul, N. A. N. Norulaini, A. K. M. Omar and R. L. Jr. Smith, J. Food Eng., 73, 210 (2006).

    Article  CAS  Google Scholar 

  30. M. D. L. De Castro, M. Variance and M. T. Tena, Analytical supercritical fluid extraction, Berlin, Springer (1994).

    Book  Google Scholar 

  31. M. D. A. Saldana, Z. Carsten, R. S. Mohammed and G. Brunner, J. Supercrit. Fluids, 22, 119 (2002).

    Article  CAS  Google Scholar 

  32. J.M. Dobbs, J.M. Wong, R. J. Lahiere and K. P. Johnston, Ind. Eng. Chem. Res., 26, 56 (1987).

    Article  CAS  Google Scholar 

  33. A. P. Sánchez-Camargo, M. Å. A. Meireles, A. L. K. Ferreira, E. Saito and F. A. Cabral,, J. Supercrit. Fluids, 61, 71 (2012).

    Article  Google Scholar 

  34. M. J. Cocero and L. Calvo, J. Am. Oil. Chem. Soc., 73, 1573 (1996).

    Article  CAS  Google Scholar 

  35. M. Olimpio, M. Maria Dolores, M. L. Carmen, M. L. Luis, M. Casimiro, R. Miguel, O. De la and M. Enrique, J. Agric. Food Chem., 53, 9701 (2005).

    Article  Google Scholar 

  36. J. Shi, C. Yi, S. J. Xue, Y. Jiang, Y. Ma and D. Li, J. Food Eng., 93, 431 (2009).

    Article  CAS  Google Scholar 

  37. J. Arul, A. Boudreau, J. Makhlouf, R. Tardif and M. R. Sahasrabudhe, J. Food Sci., 52, 1231 (1987).

    Article  CAS  Google Scholar 

  38. J. M. Prausnitz, Inst. Chem. Eng. Trans., 59, 3 (1981).

    CAS  Google Scholar 

  39. M. Medir and F. Giralt, Am. Ins. Chem. Eng. J., 28, 341 (1982).

    Article  CAS  Google Scholar 

  40. E. Stahl, K.W. Quirin and D. Gerald, Dense gases for extraction and refining, Springer-Verlag, New York (1988).

    Book  Google Scholar 

  41. J.M. Walsh, M. L. Greenfield, G. D. Ikonomou and M. D. Donohue, Chem. Eng. Com., 86, 124 (1989).

    Article  Google Scholar 

  42. R. Intarasirisawat, S. Benjakul and W. Visessanguan, Food Chem., 124, 1328 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Md Zaidul Islam Sarker or Mohd Omar Ab Kadir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferdosh, S., Sarker, M.Z.I., Rahman, N.N.N.A. et al. Supercritical carbon dioxide extraction of oil from Thunnus tonggol head by optimization of process parameters using response surface methodology. Korean J. Chem. Eng. 30, 1466–1472 (2013). https://doi.org/10.1007/s11814-013-0070-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-013-0070-3

Key words

Navigation