Skip to main content
Log in

Application of Response Surface Methodology to Supercritical CO2 Extraction: Case Study on Coextraction of Carotenoids and Oil from Rosehip Shells and Seeds

  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

Response surface methodology (RSM) is an experimental strategy widely used as a research tool in investigation. We reviewed 89 papers that used RSM to study the extraction of oils or minor lipids, using supercritical (SC) CO2, and observed that most of these studies have not contributed to an understanding of the extraction phenomenon, by neglecting prior knowledge on mass transfer or equilibrium relationships. We used the extraction of carotenoids from rosehip shells and oil from the seeds, as a case study to illustrate an improved strategy to apply RSM to oil-aided SC-CO2 extraction of high-molecular-weight nonpolar solutes, such as carotenoids. We selected the temperature and density to characterize the effect of solvent conditions, the specific CO2 consumption to characterize the interaction of solvent time and solvent power, and the percentage of seeds in the composite substrate to characterize the cosolvent effect of the oil. A rotatable central composite design was applied sequentially in three blocks, where the third block allowed incorporating quadratic coefficients to adequately describe the non-linear behavior of the responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Material

Data is available on request and can be found in the supplementary material.

Code Availability

Not applicable.

References

  1. Sharif KM, Rahman MM, Azmir J, Mohamed A, Jahurul MHA, Sahena F, Zaidul ISM (2014) Experimental design of supercritical fluid extraction – a review. J Food Eng 124:105–116. https://doi.org/10.1016/j.jfoodeng.2013.10.003

    Article  CAS  Google Scholar 

  2. del Valle JM, Aguilera JM (1989) Effects of substrate densification and CO2 conditions on supercritical extraction of mushroom oleoresins. J Food Sci 54:135–141. https://doi.org/10.1111/j.1365-2621.1989.tb08586.x

    Article  Google Scholar 

  3. del Valle JM, Bello S, Thiel J, Allen A, Chordia L (2000) Comparison of conventional and supercritical CO2-extracted rosehip oil. Braz J Chem Eng 17:335–348. https://doi.org/10.1590/S0104-66322000000300010

    Article  Google Scholar 

  4. Bisgaard S (1992) Industrial use of statistically designed experiments: case study references and some historical anecdotes. Qual Eng 4:547–562. https://doi.org/10.1080/08982119208918936

    Article  Google Scholar 

  5. Tanco M, Viles E, Ilzarbe L, Alvarez MJ (2009) Implementation of design of experiments projects in industry. Appl Stoch Models Bus Ind 25:478–505. https://doi.org/10.1002/asmb.779

  6. de Oliveira LG, de Paiva AP, Balestrassi PP, Ferreira JR, da Costa SC, da Silva Campos PH (2019) Response surface methodology for advanced manufacturing technology optimization: theoretical fundamentals, practical guidelines, and survey literature review. Int J Adv Manuf Technol 104:1785–1837. https://doi.org/10.1007/s00170-019-03809-9

    Article  Google Scholar 

  7. Haaland PD (1989) Experimental design in biotechnology, 1st edn. CRC Press, Florida. ISBN 978-1-003-06596-8

  8. Box GE, Hunter JS, Hunter WG (2005) Statistics for experimenters: design, innovation, and Discovery, 2nd edn. John Wiley & Sons, New Jersey. ISBN 978-0-471-71813-0

  9. Box GE, Draper NR (2007) Response surfaces, mixtures, and ridge analyses, 2nd edn. John Wiley & Sons. New Jersey. ISBN 978-0-470-05357-7

  10. Gacula MC Jr, Singh J, Bi J, Altan S (2009) Statistical methods in food and consumer research, 2nd edn. Academic Press, San Diego. ISBN 978-0-123-73716-8

  11. Myers RH, Montgomery DC, Anderson-Cook CM (2016) Response surface methodology: process and product optimization using designed experiments, 4th edn. John Wiley & Sons. New Jersey. ISBN 978-1-118-91601-8

  12. Montgomery DC (2019) Design and analysis of experiments, 10th edn. John Wiley & Sons. New Jersey. ISBN 978-1-119-49244-3

  13. Jones B, Montgomery DC (2019) Design of experiments: a modern approach, 1st edn. John Wiley & Sons. New Jersey. ISBN 978-1-119-61119-6

  14. e-Handbook of Statistical Methods (2022) NIST/SEMATECH, Gaithersburg. http://www.itl.nist.gov/div898/handbook/. https://doi.org/10.18434/M32189. Accessed 8 Oct 2023

  15. Yolmeh M, Jafari SM (2017) Applications of response surface methodology in the food industry processes. Food Bioprocess Technol 10:413–433. https://doi.org/10.1007/s11947-016-1855-2

    Article  CAS  Google Scholar 

  16. de Melo MMR, Silvestre AJD, Silva CM (2014) Supercritical fluid extraction of vegetable matrices: applications, trends and future perspectives of a convincing green technology. J Supercrit Fluids 92:115–176. https://doi.org/10.1016/j.supflu.2014.04.007

    Article  CAS  Google Scholar 

  17. Ahangari H, King JW, Ehsani A, Yousefi M (2021) Supercritical fluid extraction of seed oils – a short review of current trends. Trends Food Sci Technol 111:249–260. https://doi.org/10.1016/j.tifs.2021.02.066

    Article  CAS  Google Scholar 

  18. Peng WL, Mohd-Nasir H, Setapar SHM, Ahmad A, Lokhat D (2020) Optimization of process variables using response surface methodology for tocopherol extraction from Roselle seed oil by supercritical carbon dioxide. Ind Crops Prod 143:111886. https://doi.org/10.1016/j.indcrop.2019.111886

    Article  CAS  Google Scholar 

  19. Zhang S, Zu YG, Fu YJ, Luo M, Li WL, Efferth T (2010) Supercritical carbon dioxide extraction of seed oil from yellow horn (Xanthoceras sorbifolia Bunge.) and its antioxidant activity. Biores Technol 101:2537–2544. https://doi.org/10.1016/j.biortech.2009.11.082

    Article  CAS  Google Scholar 

  20. Ara KM, Jowkarderis M, Raofie F (2015) Optimization of supercritical fluid extraction of essential oils and fatty acids from flixweed (Descurainia sophia L.) seed using response surface methodology and central composite design. J Food Sci Technol 52(7):4450–4458. https://doi.org/10.1007/S13197-014-1353-3

  21. Ara KM, Karami M, Raofie F (2014) Application of response surface methodology for the optimization of supercritical carbon dioxide extraction and ultrasound-assisted extraction of Capparis spinosa seed oil. J Supercrit Fluids 85:173–182. https://doi.org/10.1016/j.supflu.2013.10.016

    Article  CAS  Google Scholar 

  22. Chouaibi M, Rigane K, Ferrari G (2020) Extraction of Citrullus colocynthis L. seed oil by supercritical carbon dioxide process using response surface methodology (RSM) and artificial neural network (ANN) approaches. Ind Crops Prod 158:113002. https://doi.org/10.1016/j.indcrop.2020.113002

  23. Suryawanshi B, Mohanty B (2018) Modeling and optimization of process parameters for supercritical CO2 extraction of Argemone mexicana (L.) seed oil. Chem Eng Commun 206:1087–1106. https://doi.org/10.1080/00986445.2018.1547712

    Article  CAS  Google Scholar 

  24. Devi V, Khanam S (2019) Development of generalized and simplified models for supercritical fluid extraction: case study of papaya (Carica papaya) seed oil. Chem Eng Res Des 150:341–358. https://doi.org/10.1016/j.cherd.2019.08.006

    Article  CAS  Google Scholar 

  25. Devi V, Khanam S (2019) Comparative study of different extraction processes for hemp (Cannabis sativa) seed oil considering physical, chemical and industrial-scale economic aspects. J Clean Prod 207:645–657. https://doi.org/10.1016/j.jclepro.2018.10.036

    Article  CAS  Google Scholar 

  26. Suryawanshi B, Mohanty B (2018) Modeling and optimization: supercritical CO2 extraction of Pongamia pinnata (L.) seed oil. J Environ Chem Eng 6:2660–2673. https://doi.org/10.1016/j.jece.2018.04.014

    Article  CAS  Google Scholar 

  27. Rai A, Mohanty B, Bhargava R (2015) Modeling and response surface analysis of supercritical extraction of watermelon seed oil using carbon dioxide. Sep Purif Technol 141:354–365. https://doi.org/10.1016/j.seppur.2014.12.016

    Article  CAS  Google Scholar 

  28. Daraee A, Ghoreishi SM, Hedayati A (2019) Supercritical CO2 extraction of chlorogenic acid from sunflower (Helianthus annuus) seed kernels: modeling and optimization by response surface methodology. J Supercrit Fluids 144:19–27. https://doi.org/10.1016/j.supflu.2018.10.001

    Article  CAS  Google Scholar 

  29. Zhang Z, Liu Y, Che L (2018) Optimization of supercritical carbon dioxide extraction of Eucommia ulmoides seed oil and quality evaluation of the oil. J Oleo Sci 67:255–263. https://doi.org/10.5650/jos.ess17153

    Article  CAS  PubMed  Google Scholar 

  30. Sodeifian G, Ghorbandoost S, Sajadian SA, Saadati Ardestani N (2016) Extraction of oil from Pistacia khinjuk using supercritical carbon dioxide: experimental and modeling. J Supercrit Fluids 110:265–274. https://doi.org/10.1016/j.supflu.2015.12.004

    Article  CAS  Google Scholar 

  31. Maran JP, Priya B (2015) Supercritical fluid extraction of oil from muskmelon (Cucumis melo) seeds. J Taiwan Inst Chem Eng 47:71–78. https://doi.org/10.1016/j.jtice.2014.10.007

    Article  CAS  Google Scholar 

  32. Ni Q, Gao Q, Yu W, Liu X, Xu G, Zhang Y (2015) Supercritical carbon dioxide extraction of oils from two Torreya grandis varieties seeds and their physicochemical and antioxidant properties. LWT Food Sci Technol 60:1226–1234. https://doi.org/10.1016/j.lwt.2014.09.007

    Article  CAS  Google Scholar 

  33. Kraujalis P, Venskutonis PR (2013) Optimisation of supercritical carbon dioxide extraction of amaranth seeds by response surface methodology and characterization of extracts isolated from different plant cultivars. J Supercrit Fluids 73:80–86. https://doi.org/10.1016/j.supflu.2012.11.009

    Article  CAS  Google Scholar 

  34. Zhao S, Zhang D (2013) A parametric study of supercritical carbon dioxide extraction of oil from Moringa oleifera seeds using a response surface methodology. Sep Purif Technol 113:9–17. https://doi.org/10.1016/j.seppur.2013.03.041

    Article  CAS  Google Scholar 

  35. Zhang QA, Fan XH, Zhang ZQ, Zhang BS, Zhang ZQ, Jia XY (2009) Optimization of SC-CO2 extraction of oil from almond pretreated with autoclaving. LWT Food Sci Technol 42:1530–1537. https://doi.org/10.1016/j.lwt.2009.05.007

    Article  CAS  Google Scholar 

  36. Xu X, Gao Y, Liu G, Wang Q, Zhao J (2008) Optimization of supercritical carbon dioxide extraction of sea buckthorn (Hippophaë thamnoides L.) oil using response surface methodology. LWT Food Sci Technol 41:1223–1231. https://doi.org/10.1016/j.lwt.2007.08.002

    Article  CAS  Google Scholar 

  37. Liu Z, Liu B, Kang H, Yue H, Chen C, Jiang L, Shao Y (2019) Subcritical fluid extraction of Lycium ruthenicum seeds oil and its antioxidant activity. Int J Food Sci Technol 54:161–169. https://doi.org/10.1111/ijfs.13920

    Article  CAS  Google Scholar 

  38. Sodeifian G, Sajadian SA, Saadati-Ardestani N (2017) Supercritical fluid extraction of omega-3 from Dracocephalum kotschyi seed oil: process optimization and oil properties. J Supercrit Fluids 119:139–149. https://doi.org/10.1016/j.supflu.2016.08.019

    Article  CAS  Google Scholar 

  39. Yu J, Wang J, Liu C, Liu Z, Wang Q (2012) Application of response surface methodology to optimise supercritical carbon dioxide extraction of oil from rapeseed (Brassica napus L.). Int J Food Sci Technol 47:1115–1121. https://doi.org/10.1111/j.1365-2621.2012.02948.x

    Article  CAS  Google Scholar 

  40. Ghoreishi SM, Bataghva E (2011) Supercritical extraction of evening primrose oil: experimental optimization via response surface methodology. AIChE J 57:3378–3384. https://doi.org/10.1002/aic.12532

    Article  CAS  Google Scholar 

  41. Çelik HT, Gürü M (2015) Extraction of oil and silybin compounds from milk thistle seeds using supercritical carbon dioxide. J Supercrit Fluids 100:105–109. https://doi.org/10.1016/j.supflu.2015.02.025

    Article  CAS  Google Scholar 

  42. Özkal SG (2009) Response surface analysis and modeling of flaxseed oil yield in supercritical carbon dioxide. J Am Oil Chem Soc 86:1129–1135. https://doi.org/10.1007/s11746-009-1448-6

    Article  CAS  Google Scholar 

  43. Özkal SG, Yener ME, Bayindirli L (2005) Response surfaces of apricot kernel oil yield in supercritical carbon dioxide. LWT Food Sci Technol 38:611–616. https://doi.org/10.1016/j.lwt.2004.08.003

    Article  CAS  Google Scholar 

  44. de Lucas A, Rincón J, Gracia I (2003) Influence of operation variables on quality parameters of olive husk oil extracted with CO2: three-step sequential extraction. J Am Oil Chem Soc 80:181–188. https://doi.org/10.1007/s11746-003-0674-4

    Article  Google Scholar 

  45. de Lucas A, Rincón J, Gracia I (2002) Influence of operating variables on yield and quality parameters of olive husk oil extracted with supercritical carbon dioxide. J Am Oil Chem Soc 79:237–243. https://doi.org/10.1007/s11746-002-0467-9

  46. Durante M, Ferramosca A, Treppiccione L, Di Giacomo M, Zara V, Montefusco A, Piro G, Mita G, Bergamo P, Lenucci MS (2020) Application of response surface methodology (RSM) for the optimization of supercritical CO2 extraction of oil from patè olive cake: yield, content of bioactive molecules and biological effects in vivo. Food Chem 332:127405. https://doi.org/10.1016/j.foodchem.2020.127405

    Article  CAS  PubMed  Google Scholar 

  47. Luan Z, jie, Li, P. pei, Li, D., Meng, X. ping, & Sun, J. (2020) Optimization of supercritical-CO2 extraction of Iris lactea seed oil: component analysis and antioxidant activity of the oil. Ind Crops Prod 152:112553. https://doi.org/10.1016/j.indcrop.2020.112553

    Article  CAS  Google Scholar 

  48. Muangrat R, Jirarattanarangsri W (2020) Physicochemical properties and antioxidant activity of oil extracted from Assam tea seeds (Camellia sinensis var. assamica) by supercritical CO2 extraction. J Food Process Preserv 44:e14364. https://doi.org/10.1111/jfpp.14364

  49. Jelani NAA, Azlan A, Khoo HE, Razman MR (2019) Fatty acid profile and antioxidant properties of oils extracted from dabai pulp using supercritical carbon dioxide extraction. Int Food Res J 26:1587–1598

    Google Scholar 

  50. Mo L, Mengxi W, Dongya C, Lingyan K, Mei X, Hong L (2019) Extraction and analysis of flaxseed oil by supercritical CO2 method optimized by RSM and GC-MS. Curr Top Nutraceutical Res 17:11–16

    Google Scholar 

  51. Kulkarni NG, Kar JR, Singhal RS (2017) Extraction of flaxseed oil: a comparative study of three-phase partitioning and supercritical carbon dioxide using response surface methodology. Food Bioprocess Technol 10:940–948. https://doi.org/10.1007/s11947-017-1877-4

    Article  CAS  Google Scholar 

  52. Hossain MS, Norulaini NN, Naim AA, Zulkhairi AM, Bennama MM, Omar AM (2016) Utilization of the supercritical carbon dioxide extraction technology for the production of deoiled palm kernel cake. J CO2 Utiliz 16:121–129. https://doi.org/10.1016/j.jcou.2016.06.010

  53. Wang L, Wang X, Wang P, Xiao Y, Liu Q (2016) Optimization of supercritical carbon dioxide extraction, physicochemical and cytotoxicity properties of Gynostemma pentaphyllum seed oil: a potential source of conjugated linolenic acids. Sep Purif Technol 159:147–156. https://doi.org/10.1016/j.seppur.2016.01.007

    Article  CAS  Google Scholar 

  54. Belayneh HD, Wehling RL, Cahoon E, Ciftci ON (2015) Extraction of omega-3-rich oil from Camelina sativa seed using supercritical carbon dioxide. J Supercrit Fluids 104:153–159. https://doi.org/10.1016/j.supflu.2015.06.002

    Article  CAS  Google Scholar 

  55. Cvjetko M, Jokić S, Lepojević Ž, Vidović S, Marić B, Radojčić Redovniković I (2012) Optimization of the supercritical CO2 extraction of oil from rapeseed using response surface methodology. Food Technol Biotechnol 50:208–215

    CAS  Google Scholar 

  56. Lasekan O, Abdulkarim SM (2012) Extraction of oil from tiger nut (Cyperus esculentus L.) with supercritical carbon dioxide (SC-CO2). LWT Food Sci Technol 47:287–292. https://doi.org/10.1016/j.lwt.2012.01.021

    Article  CAS  Google Scholar 

  57. Yang R, Wang H, Jing N, Ding C, Suo Y, You J (2012) Trigonella foenum-graecum L. seed oil obtained by supercritical CO2 extraction. J Am Oil Chem Soc 89(12):2269–2278. https://doi.org/10.1007/s11746-012-2123-x

  58. Jiang ST, Niu L (2011) Optimization and evaluation of wheat germ oil extracted by supercritical CO2. Grasas Aceites 62:181–189. https://doi.org/10.3989/gya.078710

    Article  CAS  Google Scholar 

  59. Ixtaina VY, Vega A, Nolasco SM, Tomás MC, Gimeno M, Bárzana E, Tecante A (2010) Supercritical carbon dioxide extraction of oil from Mexican chia seed (Salvia hispanica L.): characterization and process optimization. J Supercrit Fluids 55:192–199. https://doi.org/10.1016/j.supflu.2010.06.003

    Article  CAS  Google Scholar 

  60. Jokić S, Zeković Z, Vidović S, Sudar R, Nemet I, Bilić M, Velić D (2010) Supercritical CO2 extraction of soybean oil: process optimisation and triacylglycerol composition. Int J Food Sci Technol 45:1939–1946. https://doi.org/10.1111/j.1365-2621.2010.02358.x

    Article  CAS  Google Scholar 

  61. Bhattacharjee P, Singhal RS, Tiwari SR (2007) Supercritical carbon dioxide extraction of cottonseed oil. J Food Eng 79:892–898. https://doi.org/10.1016/j.jfoodeng.2006.03.009

    Article  CAS  Google Scholar 

  62. Amani M, Ardestani NS, Honarvar B (2021) Experimental optimization and modeling of supercritical fluid extraction of oil from Pinus gerardiana. Chem Eng Technol 44:578–588. https://doi.org/10.1002/ceat.202000347

    Article  CAS  Google Scholar 

  63. Bojanić N, Teslić N, Rakić D, Brdar M, Fišteš A, Zeković Z, Bodroža-Solarov M, Pavlić B (2019) Extraction kinetics modeling of wheat germ oil supercritical fluid extraction. J Food Process Preserv 43:e14098. https://doi.org/10.1111/jfpp.14098

    Article  CAS  Google Scholar 

  64. Satyannarayana S, Anjaneyulu B, Neeharika TSVR, Rani KNP, Chakrabarti PP (2018) Process optimization for the supercritical carbon dioxide (SC-CO2) extraction of wheat germ oil with respect to yield, and phosphorous and tocol contents using a Box Behnken design. Grasas Aceites 69:e259–e259. https://doi.org/10.3989/gya.0102181

    Article  CAS  Google Scholar 

  65. Yamamoto N, Murakami K, Kimthet C, Wahyudiono W, Onwona-Agyeman S, Kanda H, Goto M (2018) Lipids from Vitellaria paradoxa Gaertn seeds by supercritical CO2: extraction and optimization of parameters by response surface methodology. Engineering Journal-Thailand 22:31–44. https://doi.org/10.4186/ej.2018.22.5.31

    Article  CAS  Google Scholar 

  66. Rombaut N, Savoire R, Hecke EV, Thomasset B (2017) Supercritical CO2 extraction of linseed: optimization by experimental design with regards to oil yield and composition. Eur J Lipid Sci Technol 119:1600078. https://doi.org/10.1002/ejlt.201600078

    Article  CAS  Google Scholar 

  67. Aladić K, Vidović S, Vladić J, Balić D, Jukić H, Jokić S (2016) Effect of supercritical CO2 extraction process parameters on oil yield and pigment content from by-product hemp cake. Int J Food Sci Technol 51:885–893. https://doi.org/10.1111/ijfs.13041

    Article  CAS  Google Scholar 

  68. Danlami JM, Zaini MAA, Arsad A, Yunus MAC (2015) A parametric investigation of castor oil (Ricinus comminis L) extraction using supercritical carbon dioxide via response surface optimization. J Taiwan Inst Chem Eng 53:32–39. https://doi.org/10.1016/j.jtice.2015.02.033

    Article  CAS  Google Scholar 

  69. Azmir J, Zaidul ISM, Sharif KM, Uddin MS, Jahurul MHA, Jinap S, Hajeb P, Mohamed A (2014) Supercritical carbon dioxide extraction of highly unsaturated oil from Phaleria macrocarpa seed. Food Res Int 65:394–400. https://doi.org/10.1016/j.foodres.2014.06.049

    Article  CAS  Google Scholar 

  70. Akanda MdJH, Sarker MdZI, Norulaini N, Ferdosh S, Rahman MM, Omar AKM (2013) Optimization of supercritical carbon dioxide extraction parameters of cocoa butter analogy fat from mango seed kernel oil using response surface methodology. J Food Sci Technol 52(1):319–326. https://doi.org/10.1007/s13197-013-0979-x

    Article  CAS  Google Scholar 

  71. Zhang JP, Hou XL, Yu T, Li Y, Dong HY (2012) Response surface optimization of Nigella glandulifera Freyn seed oil yield by supercritical carbon dioxide extraction. J Integr Agric 11:151–158. https://doi.org/10.1016/s1671-2927(12)60793-7

    Article  Google Scholar 

  72. He W, Gao Y, Yuan F, Bao Y, Liu F, Dong J (2010) Optimization of supercritical carbon dioxide extraction of Gardenia fruit oil and the analysis of functional components. J Am Oil Chem Soc 87:1071–1079. https://doi.org/10.1007/s11746-010-1592-z

    Article  CAS  Google Scholar 

  73. Nyam KL, Tan CP, Karim R, Lai OM, Long K, Man YBC (2010) Extraction of tocopherol-enriched oils from Kalahari melon and roselle seeds by supercritical fluid extraction (SFE-CO2). Food Chem 119:1278–1283. https://doi.org/10.1016/j.foodchem.2009.08.007

    Article  CAS  Google Scholar 

  74. Nyam KL, Tan CP, Lai OM, Long K, Che Man YB (2010) Optimization of supercritical fluid extraction of phytosterol from roselle seeds with a central composite design model. Food Bioprod Process 88:239–246. https://doi.org/10.1016/j.fbp.2009.11.002

    Article  CAS  Google Scholar 

  75. Liu G, Xu X, Hao Q, Gao Y (2009) Supercritical CO2 extraction optimization of pomegranate (Punica granatum L.) seed oil using response surface methodology. LWT Food Sci Technol 42:1491–1495. https://doi.org/10.1016/j.lwt.2009.04.011

    Article  CAS  Google Scholar 

  76. Jiao SS, Li D, Huang ZG, Zhang ZS, Bhandari B, Chen XD, Mao ZH (2008) Optimization of supercritical carbon dioxide extraction of flaxseed oil using response surface methodology. Int J Food Eng 4(4). https://doi.org/10.2202/1556-3758.1409

  77. Özkal SG, Yener ME, Salgın U, Mehmetoğlu Ü (2004) Response surfaces of hazelnut oil yield in supercritical carbon dioxide. Eur Food Res Technol 220(1):74–78. https://doi.org/10.1007/s00217-004-1013-3

    Article  CAS  Google Scholar 

  78. Da Porto C, Voinovich D, Decorti D, Natolino A (2012) Response surface optimization of hemp seed (Cannabis sativa L.) oil yield and oxidation stability by supercritical carbon dioxide extraction. J Supercrit Fluids 68:45–51. https://doi.org/10.1016/j.supflu.2012.04.008

    Article  CAS  Google Scholar 

  79. Louaer M, Zermane A, Larkeche O, Meniai AH (2019) Experimental study and optimization of the extraction of Algerian date stones oil (Phoenix dactylifera L.) using supercritical carbon dioxide. J Food Process Eng 42:e13049. https://doi.org/10.1111/jfpe.13049

  80. Li G, Song C, You J, Sun Z, Xia L, Suo Y (2011) Optimisation of red pepper seed oil extraction using supercritical CO2 and analysis of the composition by reversed-phase HPLC-FLD-MS/MS. Int J Food Sci Technol 46:44–51. https://doi.org/10.1111/j.1365-2621.2010.02441.x

    Article  CAS  Google Scholar 

  81. Xia L, You J, Li G, Sun Z, Suo Y (2011) Compositional and antioxidant activity analysis of Zanthoxylum bungeanum seed oil obtained by supercritical CO2 fluid extraction. J Am Oil Chem Soc 88:23–32. https://doi.org/10.1007/s11746-010-1644-4

    Article  CAS  Google Scholar 

  82. Li G, Sun Z, Xia L, Shi J, Liu Y, Suo Y, You J (2010) Supercritical CO2 oil extraction from Chinese star anise seed and simultaneous compositional analysis using HPLC by fluorescence detection and online atmospheric CI-MS identification. J Sci Food Agric 90:1905–1913. https://doi.org/10.1002/jsfa.4031

    Article  CAS  PubMed  Google Scholar 

  83. Palazoglu TK, Balaban MO (1998) Supercritical CO2 extraction of lipids from roasted pistachio nuts. Trans ASAE 41:679–684. https://doi.org/10.13031/2013.17193

  84. Bogdanovic A, Tadic V, Ristic M, Petrovic S, Skala D (2016) Optimization of supercritical CO2 extraction of Fenugreek seed (Trigonella foenum-graecum L.) and calculating of extracts solubility. J Supercrit Fluids 117:297–307. https://doi.org/10.1016/j.supflu.2016.07.010

    Article  CAS  Google Scholar 

  85. Chen C-R, Cheng Y-J, Shieh C-J, Hsiang D, Chang C-MJ (2013) Oil production from de-shelled Aquilaria crassna seeds using supercritical carbon dioxide extraction. J Am Oil Chem Soc 90:9–16. https://doi.org/10.1007/s11746-012-2147-2

    Article  CAS  Google Scholar 

  86. Chen CR, Cheng YJ, Ching YC, Hsiang D, Chang CMJ (2012) Green production of energetic Jatropha oil from de-shelled Jatropha curcas L. seeds using supercritical carbon dioxide extraction. J Supercrit Fluids 66:137–143. https://doi.org/10.1016/j.supflu.2012.01.010

    Article  CAS  Google Scholar 

  87. Cheng YJ, Shieh CJ, Wang YC, Lai SM, Chang CMJ (2012) Supercritical carbon dioxide extraction of omega-3 oil compounds from Ficus awkeotsang Makino achenes. Sep Purif Technol 98:62–68. https://doi.org/10.1016/j.seppur.2012.06.030

    Article  CAS  Google Scholar 

  88. Chen WH, Chen CH, Chang CMJ, Liau BC, Hsiang D (2010) Supercritical carbon dioxide extraction of triglycerides from Aquilaria crassna seeds. Sep Purif Technol 73:135–141. https://doi.org/10.1016/j.seppur.2010.03.016

    Article  CAS  Google Scholar 

  89. Chen WH, Chen CH, Chang CMJ, Chiu YH, Hsiang D (2009) Supercritical carbon dioxide extraction of triglycerides from Jatropha curcas L. seeds. J Supercrit Fluids 51:174–180. https://doi.org/10.1016/j.supflu.2009.08.010

    Article  CAS  Google Scholar 

  90. Nik Norulaini NA, Setianto WB, Zaidul ISM, Nawi AH, Azizi CYM, Omar AKM (2009) Effects of supercritical carbon dioxide extraction parameters on virgin coconut oil yield and medium-chain triglyceride content. Food Chem 116:193–197. https://doi.org/10.1016/j.foodchem.2009.02.030

    Article  CAS  Google Scholar 

  91. Ivanov DS, Čolović RR, Lević JD, Sredanović SA (2012) Optimization of supercritical fluid extraction of linseed oil using RSM. Eur J Lipid Sci Technol 114:807–815. https://doi.org/10.1002/ejlt.201100347

    Article  CAS  Google Scholar 

  92. Bimakr M, Rahman RA, Ganjloo A, Taip FS, Adzahan NM, Sarker MZI (2015) Characterization of valuable compounds from Winter Melon ( Benincasa hispida (Thunb.) Cogn.) seeds using supercritical carbon dioxide extraction combined with pressure swing technique. Food Bioprocess Technol 9:396–406. https://doi.org/10.1007/s11947-015-1636-3

    Article  CAS  Google Scholar 

  93. Bilgiç-Keleş S, Şahin-Yeşilçubuk N, Barla-Demirkoz A, Karakaş M (2019) Response surface optimization and modelling for supercritical carbon dioxide extraction of Echium vulgare seed oil. J Supercrit Fluids 143:365–369. https://doi.org/10.1016/j.supflu.2018.09.008

    Article  CAS  Google Scholar 

  94. de Oliveira NA, Mazzali MR, Fukumasu H, Gonçalves CB, de Oliveira AL (2019) Composition and physical properties of babassu seed (Orbignya phalerata) oil obtained by supercritical CO2 extraction. J Supercrit Fluids 150:21–29. https://doi.org/10.1016/j.supflu.2019.04.009

    Article  CAS  Google Scholar 

  95. Gustinelli G, Eliasson L, Svelander C, Alminger M, Ahrné L (2018) Supercritical CO2 extraction of bilberry (Vaccinium myrtillus L.) seed oil: fatty acid composition and antioxidant activity. J Supercrit Fluids 135:91–97. https://doi.org/10.1016/j.supflu.2018.01.002

    Article  CAS  Google Scholar 

  96. Jokić S, Bijuk M, Aladić K, Bilić M, Molnar M (2016) Optimisation of supercritical CO2 extraction of grape seed oil using response surface methodology. Int J Food Sci Technol 51:403–410. https://doi.org/10.1111/ijfs.12986

    Article  CAS  Google Scholar 

  97. Zahedi G, Azarpour A (2011) Optimization of supercritical carbon dioxide extraction of Passiflora seed oil. J Supercrit Fluids 58:40–48. https://doi.org/10.1016/j.supflu.2011.04.013

    Article  CAS  Google Scholar 

  98. Began G, Manohar B, Udaya Sankar K, Appu Rao AG (2000) Response surfaces for solubility of crude soylecithin lipid in super critical carbon dioxide. Eur Food Res Technol 210(3):209–212. https://doi.org/10.1007/pl00005513

    Article  CAS  Google Scholar 

  99. Wang W, Han S, Jiao Z, Cheng J, Song J (2019) Antioxidant activity and total polyphenols content of camellia oil extracted by optimized supercritical carbon dioxide. J Am Oil Chem Soc 96:1275–1289. https://doi.org/10.1002/aocs.12285

    Article  CAS  Google Scholar 

  100. Bernardo‐Gil MG, Grenha J, Santos J, Cardoso P (2002) Supercritical fluid extraction and characterization of oil from hazelnut. Eur J Lipid Sci Technol 104:402–409. https://doi.org/10.1002/1438-9312(200207)104:7<402:aid-ejlt402>3.0.co;2-n

  101. Soares JF, Prá VD, Barrales FM, dos Santos P, Kuhn RC, Rezende CA, Martínez J, Mazutti MA (2018) Extraction of rice bran oil using supercritical CO2 combined with ultrasound. Braz J Chem Eng 35:785–794. https://doi.org/10.1590/0104-6632.20180352s20160447

    Article  CAS  Google Scholar 

  102. Comin LM, Temelli F, Saldaña MA (2010) Supercritical CO2 extraction of flax lignans. J Am Oil Chem Soc 88(5):707–715. https://doi.org/10.1007/s11746-010-1704-9

    Article  CAS  Google Scholar 

  103. Sheibani A, Ghaziaskar HS (2008) Pressurized fluid extraction of pistachio oil using a modified supercritical fluid extractor and factorial design for optimization. LWT Food Sci Technol 41:1472–1477. https://doi.org/10.1016/j.lwt.2007.09.002

    Article  CAS  Google Scholar 

  104. Naik SN, Lentz H, Maheshwari RC (1989) Extraction of perfumes and flavours from plant materials with liquid carbon dioxide under liquid−vapor equilibrium conditions. Fluid Phase Equilib 49:115–126. https://doi.org/10.1016/0378-3812(89)80009-3

    Article  CAS  Google Scholar 

  105. Brunner G (1994) Gas extraction: an introduction to fundamentals of supercritical fluids and the application to separation processes. Springer, New York. https://doi.org/10.1007/978-3-662-07380-3_1

    Article  Google Scholar 

  106. del Valle JM, de la Fuente JC, Uquiche E (2012) A refined equation for predicting the solubility of vegetable oils in high-pressure CO2. J Supercrit Fluids 67:60–70. https://doi.org/10.1016/j.supflu.2012.02.004

  107. Reverchon E, Marrone C (2001) Modeling and simulation of the supercritical CO2 extraction of vegetable oils. J Supercrit Fluids 19:161–175. https://doi.org/10.1016/s0896-8446(00)00093-0

    Article  CAS  Google Scholar 

  108. del Valle JM, Germain JC, Uquiche E, Zetzl C, Brunner G (2006) Microstructural effects on internal mass transfer of lipids in prepressed and flaked vegetable substrates. J Supercrit Fluids 37:178–190. https://doi.org/10.1016/j.supflu.2005.09.002

    Article  CAS  Google Scholar 

  109. Reyes FA, Muñoz LA, Hansen A, del Valle JM (2015) Water relationships in Haematoccoccus pluvialis and their effect in high-pressure agglomeration for supercritical CO2 extraction. J Food Eng 162:18–24. https://doi.org/10.1016/j.jfoodeng.2015.03.038

    Article  CAS  Google Scholar 

  110. del Valle JM, Glatzel V, Martínez JL (2012) Supercritical CO2 extraction of allicin from garlic flakes: screening and kinetic studies. Food Res Int 45:216–224. https://doi.org/10.1016/j.foodres.2011.10.021]

    Article  Google Scholar 

  111. Eggers R, Ambrogi A, von Schnitzler J (2000) Special features of SCF solid extraction of natural products: deoiling of wheat gluten and extraction of rose hip oil. Braz J Chem Eng 17:329–334. https://doi.org/10.1590/S0104-66322000000300009

    Article  CAS  Google Scholar 

  112. Fernández-Trujillo JP (2007) Extracción convencional de oleorresina de pimentón dulce y picante I. Generalidades, composición, proceso e innovaciones y aplicaciones. Grasas Aceites 58:252–263

    Google Scholar 

  113. Sielfeld C, del Valle JM, Sastre F (2019) Effect of pelletization on supercritical CO2 extraction of rosemary antioxidants. J Supercrit Fluids 147:162–171. https://doi.org/10.1016/j.supflu.2016.04.010

    Article  CAS  Google Scholar 

  114. Uquiche E, del Valle JM, Ihl M (2005) Microstructure-extractability relationships in the extraction of prepelletized Jalapeño peppers with supercritical carbon dioxide. J Food Sci 70:E379–E386. https://doi.org/10.1111/j.1365-2621.2005.tb11442.x

    Article  CAS  Google Scholar 

  115. Muthukumarappan K, Swamy GJ (2020). Extrusion processing of foods. In M.S. Rahman (Ed), Handbook of Food Preservation, 3rd edition., pp. 647–658). CRC Press, Boca Raton, FL. ISBN 978-0-429-09148-3

  116. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0 (2018) National institute of standards and technology, standard reference data program, Gaithersburg. https://www.nist.gov/srd/refprop. Accessed 8 Oct 2023.

  117. Uquiche E, Millao S, del Valle JM (2022) Extrusion affects supercritical CO2 extraction of red pepper (Capsicum annuum L.) oleoresin. J Food Eng 316:110829. https://doi.org/10.1016/j.jfoodeng.2021.110829

  118. Araus-Sarmiento KA (2013) Identification of the effect of entrainers (triolein or ethanol) on the carotenoids extraction from red paprika (Capsicum annuum L.) using supercritical carbon dioxide (SC-CO2). Pontificia Universidad Católica de Chile, Santiago, Chile

  119. Millao S, Uquiche E (2016) Extraction of oil and carotenoids from pelletized microalgae using supercritical carbon dioxide. J Supercrit Fluids 116:223–231. https://doi.org/10.1016/j.supflu.2016.05.049

    Article  CAS  Google Scholar 

  120. Araus K, Temelli F, del Valle JM, de la Fuente JC, Robertd P (2011) Supercritical extraction of petals and pellets of marigold flowers using ethanol-modified CO2. In XI Conference on Engineering and Food (ICEF 11), Athens, Greece

  121. Winther K, Sophie Vinther Hansen A, Campbell-Tofte J (2016) Bioactive ingredients of rose hips (Rosa canina L) with special reference to antioxidative and anti-inflammatory properties: in vitro studies. Botanics 6:11–23. https://doi.org/10.2147/btat.s91385

  122. Dąbrowska M, Maciejczyk E, Kalemba D (2019) Rose hip seed oil: methods of extraction and chemical composition. Eur J Lipid Sci Technol 121:1800440. https://doi.org/10.1002/ejlt.201800440

    Article  CAS  Google Scholar 

  123. Mabe GD, Foco GM, Brignole EA, Bottini SB (1999) Extraction of rosa mosqueta (Rosa aff. rubiginosa) oil with dense fluids. Acta Horticulturae. International Society for Horticultural Science (ISHS), Leuven, Belgium, pp 37–44

  124. Reverchon E, Kaziunas A, Marrone C (2000) Supercritical CO2 extraction of hiprose seed oil: experiments and mathematical modelling. Chem Eng Sci 55:2195–2201. https://doi.org/10.1016/s0009-2509(99)00519-9

    Article  CAS  Google Scholar 

  125. Szentmihályi K, Vinkler P, Lakatos B, Illés V, Then M (2002) Rose hip (Rosa canina L.) oil obtained from waste hip seeds by different extraction methods. Bioresour Technol 82:195–201. https://doi.org/10.1016/s0960-8524(01)00161-4

    Article  Google Scholar 

  126. del Valle JM, Rivera O, Mattea M, Ruetsch L, Daghero J, Flores A (2004) Supercritical CO2 processing of pretreated rosehip seeds: effect of process scale on oil extraction kinetics. J Supercrit Fluids 31:159–174. https://doi.org/10.1016/j.supflu.2003.11.005

    Article  CAS  Google Scholar 

  127. Machmudah S, Kawahito Y, Sasaki M, Goto M (2007) Supercritical CO2 extraction of rosehip seed oil: fatty acids composition and process optimization. J Supercrit Fluids 41:421–428. https://doi.org/10.1016/j.supflu.2006.12.011

    Article  CAS  Google Scholar 

  128. Salgın U, Salgın S, Ekici DD, Uludağ G (2016) Oil recovery in rosehip seeds from food plant waste products using supercritical CO2 extraction. J Supercrit Fluids 118:194–202. https://doi.org/10.1016/j.supflu.2016.08.011

    Article  CAS  Google Scholar 

  129. Jahongir H, Miansong Z, Amankeldi I, Yu Z, Changheng L (2019) The influence of particle size on supercritical extraction of dog rose (Rosa canina) seed oil. J King Saud Univ Eng Sci 31:140–143. https://doi.org/10.1016/j.jksues.2018.04.004

  130. Illés V, Szalai O, Then M, Daood H, Perneczki S (1997) Extraction of hiprose fruit by supercritical CO2 and propane. J Supercrit Fluids 10:209–218. https://doi.org/10.1016/s0896-8446(97)00018-1

    Article  Google Scholar 

  131. Machmudah S, Kawahito Y, Sasaki M, Goto M (2008) Process optimization and extraction rate analysis of carotenoids extraction from rosehip fruit using supercritical CO2. J Supercrit Fluids 44:308–314. https://doi.org/10.1016/j.supflu.2007.09.032

    Article  CAS  Google Scholar 

  132. TTozzi R, Mulinacci N, Storlikken K, Pasquali I, Vincieri FF, Bettini R (2008) Supercritical extraction of carotenoids from Rosa canina L. hips and their formulation with β-cyclodextrin. AAPS PharmSciTech 9:693. https://doi.org/10.1208/s12249-008-9100-6

  133. Watanabe Y, Honda M, Higashiura T, Fukaya S, Machmudah S, Wahyudiono K, H., & Goto, M. (2018) Rapid and selective concentration of lycopene z-isomers from tomato pulp by supercritical CO2 with co-solvents. Solvent Extr Res Dev, Jpn 25:47–57

    Article  CAS  Google Scholar 

  134. Shi J, Yi C, Xue SJ, Jiang Y, Ma Y, Li D (2009) Effects of modifiers on the profile of lycopene extracted from tomato skins by supercritical CO2. J Food Eng 93:431–436. https://doi.org/10.1016/j.jfoodeng.2009.02.008

    Article  CAS  Google Scholar 

  135. Vasapollo G, Longo L, Rescio L, Ciurlia L (2004) Innovative supercritical CO2 extraction of lycopene from tomato in the presence of vegetable oil as co-solvent. J Supercrit Fluids 29:87–96. https://doi.org/10.1016/s0896-8446(03)00039-1

    Article  CAS  Google Scholar 

  136. Sun M, Temelli F (2006) Supercritical carbon dioxide extraction of carotenoids from carrot using canola oil as a continuous co-solvent. J Supercrit Fluids 37(3):397–408. https://doi.org/10.1016/j.supflu.2006.01.008

    Article  CAS  Google Scholar 

  137. Palumpitag W, Prasitchoke P, Goto M, Shotipruk A (2011) Supercritical carbon dioxide extraction of marigold lutein fatty acid esters: effects of cosolvents and saponification conditions. Sep Sci Technol 46:605–610. https://doi.org/10.1080/01496395.2010.533739

    Article  CAS  Google Scholar 

  138. Ma Q, Xu X, Gao Y, Wang Q, Zhao J (2008) Optimisation of supercritical carbon dioxide extraction of lutein esters from marigold (Tagetes erect L.) with soybean oil as a co-solvent. Int J Food Sci Technol 43:1763–1769. https://doi.org/10.1111/j.1365-2621.2007.01694.x

    Article  CAS  Google Scholar 

  139. Razi Parjikolaei B, Cardoso LC, Fernández-Ponce MT, Mantell Serrano C, Frette XC, Christensen KV (2015) Northern shrimp (Pandalus borealis) processing waste: effect of supercritical fluid extraction technique on carotenoid extract concentration. Chem Eng Trans 43:1045–1050

    Google Scholar 

  140. Ciurlia L, Bleve M, Rescio L (2009) Supercritical carbon dioxide co-extraction of tomatoes (Lycopersicum esculentum L.) and hazelnuts (Corylus avellana L.): a new procedure in obtaining a source of natural lycopene. J Supercrit Fluids 49:338–344. https://doi.org/10.1016/j.supflu.2009.03.003

    Article  CAS  Google Scholar 

  141. Barros HDFQ, Grimaldi R, Cabral FA (2017) Lycopene-rich avocado oil obtained by simultaneous supercritical extraction from avocado pulp and tomato pomace. J Supercrit Fluids 120:1–6. https://doi.org/10.1016/j.supflu.2016.09.021

    Article  CAS  Google Scholar 

  142. Barros HDFQ, Coutinho JP, Grimaldi R, Godoy HT, Cabral FA (2016) Simultaneous extraction of edible oil from avocado and capsanthin from red bell pepper using supercritical carbon dioxide as solvent. J Supercrit Fluids 107:315–320. https://doi.org/10.1016/j.supflu.2015.09.025

    Article  CAS  Google Scholar 

  143. Getachew AT, Saravana PS, Cho YJ, Woo HC, Chun BS (2018) Concurrent extraction of oil from roasted coffee (Coffea arabica) and fucoxanthin from brown seaweed (Saccharina japonica) using supercritical carbon dioxide. J CO2 Utiliz 25:137–146. https://doi.org/10.1016/j.jcou.2018.03.018

  144. Machmudah S, Winardi S, Sasaki M, Goto M, Kusumoto N, Hayakawa K (2012) Lycopene extraction from tomato peel by-product containing tomato seed using supercritical carbon dioxide. J Food Eng 108:290–296. https://doi.org/10.1016/j.jfoodeng.2011.08.012

    Article  CAS  Google Scholar 

  145. Ndayishimiye J, Chun BS (2017) Optimization of carotenoids and antioxidant activity of oils obtained from a co-extraction of citrus (Yuzu ichandrin) by-products using supercritical carbon dioxide. Biomass Bioenerg 106:1–7. https://doi.org/10.1016/j.biombioe.2017.08.014

    Article  CAS  Google Scholar 

  146. (2022) Flavex Naturextrakte: General Specification Rosehip CO2-to extract (organic) DE-ÖKO- 013, Type No. 046.005. https://www.flavex.com/en/produkt/046_005/

  147. Flavex Naturextrakte: General Specification Rosehip Seed CO2-to extract (organic) DE- ÖKO-013, Type No. 046.004. https://www.flavex.com/en/produkt/046_004/

  148. del Valle JM (2015) Extraction of natural compounds using supercritical CO2: going from the laboratory to the industrial application. J Supercrit Fluids 96:180–199. https://doi.org/10.1016/j.supflu.2014.10.001

    Article  CAS  Google Scholar 

  149. Gardner DS (1982) Industrial scale hop extraction with liquid carbon dioxide. Chem Ind 19:402–405

  150. Funazukuri T, Toriumi M, Yui K, Kong CY, Kagei S (2009) Correlation for binary diffusion coefficients of lipids in supercritical carbon dioxide. In 9th International Symposium on Supercritical Fluids, Arcachon, France

  151. King MB, Catchpole O (1993) Physico-chemical data required for the near-critical fluid extraction process. In: King MJ, Bott TR (eds) Extraction of natural products using near-critical solvents. Blackie Academic & Professional, Glasglow, UK, pp 184–231

    Chapter  Google Scholar 

  152. Sovová H (2012) Steps of supercritical fluid extraction of natural products and their characteristic times. J Supercrit Fluids 66:73–79. https://doi.org/10.1016/j.supflu.2011.11.004

    Article  CAS  Google Scholar 

  153. Sovová H (2005) Mathematical model for supercritical fluid extraction of natural products and extraction curve evaluation. J Supercrit Fluids 33:35–52. https://doi.org/10.1016/j.supflu.2004.03.005

    Article  CAS  Google Scholar 

  154. Sovová H (1994) Rate of the vegetable oil extraction with supercritical CO2−I. Modelling of extraction curves. Chem Eng Sci 49:409–414. https://doi.org/10.1016/0009-2509(94)87012-8

    Article  Google Scholar 

  155. del Valle JM, Jiménez M, de la Fuente JC (2003) Extraction kinetics of pre-pelletized Jalapeño peppers with supercritical CO2. J Supercrit Fluids 25:33–44. https://doi.org/10.1016/s0896-8446(02)00090-6

    Article  Google Scholar 

  156. Arias J, Martínez J, Stashenko E, del Valle JM, Núñez GA (2022) Supercritical CO2 extraction of pinocembrin from Lippia origanoides distillation residues. 2. Mathematical modeling of mass transfer kinetics as a function of substrate pretreatment. J Supercrit Fluids 180:105458. https://doi.org/10.1016/j.supflu.2021.105458

  157. Urrego FA, Núñez GA, Donaire YD, del Valle JM (2015) Equilibrium partition of rapeseed oil between supercritical CO2 and prepressed rapeseed. J Supercrit Fluids 102:80–91. https://doi.org/10.1016/j.supflu.2015.04.004

    Article  CAS  Google Scholar 

  158. Araus KA, Canales RI, del Valle JM, de la Fuente JC (2011) Solubility of β-carotene in ethanol- and triolein-modified CO2. J Chem Thermodyn 43:1991–2001. https://doi.org/10.1016/j.jct.2011.07.013

    Article  CAS  Google Scholar 

  159. Araus KA, del Valle JM, Robert PS, de la Fuente JC (2012) Effect of triolein addition on the solubility of capsanthin in supercritical carbon dioxide. J Chem Thermodyn 51:190–194. https://doi.org/10.1016/j.jct.2012.02.030

    Article  CAS  Google Scholar 

  160. Mansoori GA, Schulz K, Martinelli E (1988) Bioseparation using supercritical fluid extraction/retrograde condensation. Bio/Technology 6:393–396

    CAS  Google Scholar 

  161. Foster NR, Gurdial GS, Yun JSL, Liong KK, Tilly KD, Ting SST, Singh H, Lee JH (1991) Significance of the crossover pressure in solid-supercritical fluid phase equilibria. Ind Eng Chem Res 30:1955–1964. https://doi.org/10.1021/ie00056a044

    Article  CAS  Google Scholar 

  162. Chrastil J (1982) Solubility of solids and liquids in supercritical gases. J Phys Chem 86:3016–3021. https://doi.org/10.1021/j100212a041

    Article  CAS  Google Scholar 

  163. Valenzuela LM, Reveco-Chilla AG, del Valle JM (2014) Modeling solubility in supercritical carbon dioxide using quantitative structure–property relationships. J Supercrit Fluids 94:113–122. https://doi.org/10.1016/j.supflu.2014.06.022

    Article  CAS  Google Scholar 

  164. Palma M, Taylor LT (1999) Statistical design for optimization of extraction of polyphenols from an inert matrix using carbon dioxide-based fluids. Anal Chim Acta 391:321–329. https://doi.org/10.1016/s0003-2670(99)00210-x

    Article  CAS  Google Scholar 

  165. Palma M, Taylor LT (1999) Extraction of polyphenolic compounds from grape seeds with near critical carbon dioxide. J Chromatogr A 849:117–124. https://doi.org/10.1016/s0021-9673(99)00569-5

    Article  CAS  PubMed  Google Scholar 

  166. Coelho SRM, Araújo JMA, Scheuermann ESS (2000) Remoção de limoneno do óleo essencial de limão siliciano adsorvido em sílica gel pelo CO2 supercrítico. Arquivos de Ciências da Saúde da UNIPAR 4(247–250):63

    Google Scholar 

  167. Millao S, Uquiche E (2016) Antioxidant activity of supercritical extracts from Nannochloropsis gaditana: correlation with its content of carotenoids and tocopherols. J Supercrit Fluids 111:143–150. https://doi.org/10.1016/j.supflu.2016.02.002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Rosehip seeds and shells were kindly provided by Novbeltec S. A. (Julio Thiel). Extraction assays were performed by Sonia Millao from UFro which is greatly appreciated.

Author information

Authors and Affiliations

Authors

Contributions

Edgar Uquiche: conceptualization, writing first draft (“Variations on Oil Yield with Process Conditions” and “Variations on Carotenoid Content in the Oil with Process Conditions”, sections and Appendices C and D), experimental work: data gathering and analysis, statistical analysis, making illustrations (Tables 4–6), preparing answers to reviewers. Julián Arias: conceptualization, writing first draft (“RSM and its Application in Food Engineering” and “Application of RSM on the Supercritical CO2 Extraction of Oilseeds” sections and Appendices A, B, and E), critical analysis of literature data, making of illustrations (Tables 1–3 and 7), initial editing, preparing answers to reviewers. José Manuel del Valle: conceptualization, outlining, writing first draft (“Introduction”, “Effect of Process Variables on the Supercritical CO2 Extraction of Oil in Seeds”, “Supercritical CO2 Extraction of Oils and Carotenoids in Rosehip Seeds and Shells”, “Implication of Results”, and “Conclusions” sections), making illustrations (all figures), final editing, communicating with journal officials.

Corresponding author

Correspondence to José Manuel del Valle.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1142 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uquiche, E., Arias, J. & del Valle, J.M. Application of Response Surface Methodology to Supercritical CO2 Extraction: Case Study on Coextraction of Carotenoids and Oil from Rosehip Shells and Seeds. Food Eng Rev 15, 643–666 (2023). https://doi.org/10.1007/s12393-023-09357-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-023-09357-z

Keywords

Navigation