Skip to main content
Log in

Arsenic adsorption on goethite nanoparticles produced through hydrazine sulfate assisted synthesis method

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Goethite nanoparticles synthesized using hydrazine sulfate as a modifying agent were evaluated for As(V) adsorption capacity. The nanoparticles were characterized for their morphological and structural features. The precipitated goethite particles were spherical with particle size of less than 10 nm. Batch adsorption study was carried out systematically varying parameters such as pH, contact time, initial As(V) concentration and adsorbent doses. The Langmuir isotherm represented the equilibrium data well and the estimated monolayer adsorption capacity at ambient temperature was 76 mg/g, which is significantly higher than most of the adsorbents reported in the literature. Adsorption kinetic data were better represented by the pseudo-second order kinetic model. Intra-particle diffusion played a significant role in the rate controlling process in the initial hour. Desorption study showed that the loaded adsorbent could be regenerated when treated with dilute sodium hydroxide solution of pH 13.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Bissen and F. H. Frimemel, Acta Hydroch. Hydrob., 30(1), 9 (2003).

    Article  Google Scholar 

  2. WHO (World Health Organisation) Guidelines for drinking water quality (1993).

  3. D. Mohan and C. U. Pittman, J. Hazard. Mater., 142, 1 (2007).

    Article  CAS  Google Scholar 

  4. M. E. Pena, G. P. Korfiatis, M. Patel, L. Lippincott and X. Meng, Water Res., 39, 2327 (2005).

    Article  CAS  Google Scholar 

  5. J.T. Mayo, C. Yavuz, S. Yean, L. Cong, H. Shipley, W. Yu, J. Falkner, A. Kan, M. Tomson and V. L. Colvin, Sci. Technol. Adv. Mat., 8, 71 (2007).

    Article  CAS  Google Scholar 

  6. T. Tuutijärvi, J. Lu, M. Sillanpää and G. Chen, J. Hazard. Mater., 166, 1415 (2009).

    Article  Google Scholar 

  7. S. R. Kanel, J.-M. Greneche and H. Choi, Environ. Sci. Technol., 40, 2045 (2006).

    Article  CAS  Google Scholar 

  8. G. Jegadeesan, K. Mondal and S. B. Lalvani, Environ. Progr., 24, 289 (2005).

    Article  CAS  Google Scholar 

  9. S. Yean, L. Cong, C. T. Yavuz, J.T. Mayo, W.W. Yu, A. T. Kan, V. L. Calvin and M. B. Tomson, J. Mater. Res., 20(12), 3255 (2005).

    Article  CAS  Google Scholar 

  10. G. A. Waychunas, C. S. Kim and J. F. Banfield, J. Nanopart. Res., 7, 409 (2005).

    Article  CAS  Google Scholar 

  11. P. R. Grossl and D. L. Sparks, Geoderma, 67, 87 (1995).

    Article  CAS  Google Scholar 

  12. B. A. Manning, S. E. Fendorf and S. Goldberg, Environ. Sci. Technol., 32, 2383 (1998).

    Article  CAS  Google Scholar 

  13. K. A. Matis, A. I. Zouboulis, F. B. Malamas, M. D.R. Afonso and M. J. Hudson, Environ. Pollut., 97, 239 (1997).

    Article  CAS  Google Scholar 

  14. R. J. Bowell, Appl. Geochem., 9, 279 (1994).

    Article  CAS  Google Scholar 

  15. S. Fendorf, M. J. Eick, P. Grossl and D. L. Sparks, Environ. Sci. Technol., 31(2), 315 (1997).

    Article  CAS  Google Scholar 

  16. S. Music, A. Sanc, S. Popovic, K. Nomura and T. Sawada, Croat. Chem. Acta, 73(2), 541 (2000).

    CAS  Google Scholar 

  17. K. M. Parida and J. Das, J. Colloid Interface Sci., 178, 586 (1996).

    Article  CAS  Google Scholar 

  18. H. D. Ruan, R. I. Frost, J. T. Kloprogge and L. Duong, Spectrochim. Acta A, 58, 967 (2002).

    Article  CAS  Google Scholar 

  19. M. Ristic, E. De Grave, S. Music, S. Popovic and Z. Orehovec, J. Molecular Structure, 834–836, 454 (2007).

    Article  Google Scholar 

  20. S. S. Tripathy and A. M. Raichur, Chem. Eng. J., 138, 179 (2008).

    Article  CAS  Google Scholar 

  21. S. Lagergren, Kungliga Svenska Vetenskapsakademiens Handlingar, 24, 1 (1898).

    Google Scholar 

  22. G. McKay and Y. S. Ho, Process Biochem., 34, 451 (1999).

    Article  Google Scholar 

  23. W. J. J. Weber and J. C. Morris, J. Sanit. Eng. Div. Am. Soc. Civil Engineers, 89, 31 (1963).

    Google Scholar 

  24. H. S. Altundogan, S. Altundogan, F. Tumen and M. Bildik, Waste Manage., 20, 761 (2000).

    Article  CAS  Google Scholar 

  25. M.A. Anderson, J. F. Ferguson and J. Gavis, J. Colloid Interface Sci., 54, 391 (1976).

    Article  CAS  Google Scholar 

  26. K. R. Hall, L. C. Eagleton, A. Acrivos and T. Vermeulen, Ind. Eng. Chem. Fundam., 5, 212 (1966).

    Article  CAS  Google Scholar 

  27. L. Sigg, Aquatic Surface Chemistry: Chemical Processes at the Particle-Water Interface. In: Stum W. (Ed.), John Wiley and Sons, New York (1987).

    Google Scholar 

  28. S. E. O’Reilly, D.G. Strawn and D. L. Sparks, Soil Sci. Soc. Am. J., 65, 67 (2001).

    Article  Google Scholar 

  29. K. Gupta, S. Saha and U. C. Ghosh, J. Nanopart. Res., 20, 1361 (2008).

    Article  Google Scholar 

  30. P. M. Solozhenkin, E. A. Deliyanni, V. N. Bakoyannakis, A. I. Zouboulis and K. A. Matis, J. Min. Sci., 39(3), 287 (2003).

    Article  Google Scholar 

  31. S.A. Wasay, M. J. Haron, A. Uchiumi and S. Tokunaga, Water Res., 30(5), 1143 (1996).

    Article  CAS  Google Scholar 

  32. H. Park, N.V. Myung, H. Jung and H. Choi, J. Nanopart. Res., 11, 1981 (2009).

    Article  CAS  Google Scholar 

  33. D. Mohapatra, D. Mishra and K. H. Park, J. Environ. Sci., 20, 683 (2008).

    Article  CAS  Google Scholar 

  34. P. Chutia, S. Kato, T. Kojima and S. Satokawa, J. Hazard. Mater., 162, 440 (2009).

    Article  CAS  Google Scholar 

  35. D. Borah, S. Satokawa, S. Kato and T. Kojima, J. Colloid Interface Sci., 319, 53 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malay Kumar Ghosh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, M.K., Poinern, G.E.J., Issa, T.B. et al. Arsenic adsorption on goethite nanoparticles produced through hydrazine sulfate assisted synthesis method. Korean J. Chem. Eng. 29, 95–102 (2012). https://doi.org/10.1007/s11814-011-0137-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-011-0137-y

Key words

Navigation