Skip to main content
Log in

Adsorption and desorption of uranium on nano goethite and nano alumina

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The nano goethite and nano alumina were synthesized to investigate the effect of nanoscale size on adsorption–desorption of U(VI) from aqueous solution. It was determined that the site densities of nanoparticles are higher than α-alumina and goethite, whereas slight effect of carbonate on adsorption of U(VI) onto nanoparticles was observed. The maximum adsorption capacities of nano alumina and nano goethite were ~151 and 79 mg/g, respectively. The batch desorption indicated stronger binding affinity of U(VI) for nanoparticles as compared to non-nanoparticles, which were consistent with the results of surface complexation modeling assuming weak and strong sites for nanoparticles while weak sites for α-alumina and goethite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Davis JA, Meece DE, Kohler M, Curtis GP (2004) Geochim Cosmochim Acta 66:3621–3641

    Article  Google Scholar 

  2. Crain JS, Smith LL, Yaeger JS, Alvarado JA (1995) J Radioanal Nucl Chem 194:133–139

    Article  CAS  Google Scholar 

  3. Hunter DB, Bertsch PM (1998) J Radioanal Nucl Chem 234:237–242

    Article  CAS  Google Scholar 

  4. Singer DM, Zachara JM, Brown GE (2009) Environ Sci Technol 43:630–636

    Article  CAS  Google Scholar 

  5. Zeng H, Singh A, Basak S, Ulrich KU, Sahu M, Biswas P, Catalano JG, Giammar DE (2009) Environ Sci Technol 43:1373–1378

    Article  CAS  Google Scholar 

  6. Zeng H, Giammar DE (2011) J Nanopart Res 13:3741–3754

    Article  CAS  Google Scholar 

  7. Sun YB, Yang ST, Sheng GD, Wang Q, Guo ZQ, Wang XK (2012) Radiochim Acta 100:779–784

    Article  CAS  Google Scholar 

  8. Elhefnawy OA, Zidan WI, Abo-Aly MM, Bakier EM, Elsayed GA (2014) J Radioanal Nucl Chem 299:1821–1832

    Article  CAS  Google Scholar 

  9. Mukherjee J, Ramkumar J, Chandramouleeswaran S, Shukla R, Tyagi AK (2013) J Radioanal Nucl Chem 297:49–57

    Article  CAS  Google Scholar 

  10. Sun YB, Yang ST, Sheng GD, Guo ZQ, Tan XL, Xu JZ, Wang XK (2011) Sep Purif Technol 83:196–203

    Article  Google Scholar 

  11. Wang AY, Kuo CL, Lin JL (2010) J Radioanal Nucl Chem 284:405–413

    Article  CAS  Google Scholar 

  12. Sun Y, Wang Q, Yang S, Sheng G, Guo Z (2011) J Radioanal Nucl Chem 290:643–648

    Article  CAS  Google Scholar 

  13. Sadeghi M, Sarabadani P, Karami H (2010) J Radioanal Nucl Chem 283:297–303

    Article  CAS  Google Scholar 

  14. Um W, Mattigod S, Serne RJ, Fryxell GE, Kim DH, Troyer LD (2007) Water Res 41:3217–3226

    Article  CAS  Google Scholar 

  15. Nomural K, Reuther H (2011) J Radioanal Nucl Chem 287:341–346

    Article  Google Scholar 

  16. Dodge CJ, Francis AJ, Gillow JB, Halada GP, Eng C, Clayton CR (2002) Environ Sci Technol 36:3504–3511

    Article  CAS  Google Scholar 

  17. Moon JW, Roh Y, Phelps TJ, Phillips DH, Watson DB, Kim YJ, Brooks SC (2006) J Environ Qual 35:1731–1741

    Article  CAS  Google Scholar 

  18. Shin YS, Burleigh MC, Dai S, Barnes CE, Xue ZL (1999) Radiochim Acta 84:37–42

    CAS  Google Scholar 

  19. Wang YF, Bryan C, Xu HF, Gao HZ (2003) Geology 31:387–390

    Article  CAS  Google Scholar 

  20. Wang YF, Bryan C, Xu HF, Pohl P, Yang Y, Brinker CJ (2010) J Colloid Interface Sci 254:23–30

    Article  Google Scholar 

  21. Hyun SP, Cho YH, Hahn PS, Kim SJ (2001) J Radioanal Nucl Chem 250:55–62

    Article  CAS  Google Scholar 

  22. Waite TD, Davis JA, Payne TE, Waychunas GA, Xu N (1994) Geochim Cosmochim Acta 58:5465–5478

    Article  CAS  Google Scholar 

  23. Waite TD, Davis JA, Fenton BR, Payne TE (2000) Radiochim Acta 88:687–693

    Article  CAS  Google Scholar 

  24. Qian LP, Ma MH, Wei JB, He D, Cheng DH (2012) J Radioanal Nucl Chem 292:1215–1219

    Article  CAS  Google Scholar 

  25. Paul T, Machesky ML, Strathmann TJ (2012) Environ Sci Technol 46:11896–11904

    Article  CAS  Google Scholar 

  26. Sun YB, Shao DD, Chen CL, Yang SB, Wang XK (2013) Environ Sci Technol 47:9904–99110

    Article  CAS  Google Scholar 

  27. Cornell RM, Schwertmann U (1979) Clay Clay Miner 27:402–410

    Article  CAS  Google Scholar 

  28. Liang X, Wang X, Zhuang J, Chen YT, Wang DS, Li YD (2006) Adv Funct Mater 16:1805–1813

    Article  CAS  Google Scholar 

  29. Kim P, Kim Y, Kim H, Song IK (2004) J Mol Catal 219:87–95

    Article  CAS  Google Scholar 

  30. Stollenwerk KG (1995) Water Resour Res 31:347–357

    Article  CAS  Google Scholar 

  31. Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC, version 2. US Geological Survey, Denver

    Google Scholar 

  32. Dogan M, Abak H, Alkan M (2009) J Hazard Mater 164:172–181

    Article  CAS  Google Scholar 

  33. van Beinum W, Hofmann A, Meeussen JCL, Kretzschmar R (2005) J Colloid Interface Sci 283:18–28

    Article  Google Scholar 

  34. Lagergren S (1998) Kungliga Svenka Reten Skapsakademiens Handlingar 24:1–39

    Google Scholar 

  35. Ho YS, Mckay G (1998) Chem Eng J 24:115–124

    Article  Google Scholar 

  36. Cheng WC, Ding CC, Sun YB, Wang ML (2014) J Radioanal Nucl Chem. doi:10.1007/s10967-014-3180-4

    Google Scholar 

  37. Kohler M, Curtis GP, Meece DE, Davis JA (2004) Environ Sci Technol 38:240–247

    Article  CAS  Google Scholar 

  38. Langmuir I (1918) J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  39. Freundlich HMF (1906) J Phys Chem 57:385–470

    CAS  Google Scholar 

  40. Yates DE, Levine S, Healy TW (1974) J Chem Soc, Faraday Trans 70:1807–1818

    Article  CAS  Google Scholar 

  41. Davis JA, James RO, Leckie JO (1978) J Colloid Interface Sci 63:480–499

    Article  CAS  Google Scholar 

  42. Sun YB, Wang Q, Chen CL, Tan XL, Wang XK (2012) Environ Sci Technol 46:6020–6027

    Article  CAS  Google Scholar 

  43. Sun YB, Li JX, Wang XK (2014) Geochim Cosmochim Acta 140:621–643.

  44. Qian LP, Ma MH, Cheng DH (2013) J Radioanal Nucl Chem 295:1405–1411

    Article  CAS  Google Scholar 

  45. Davis JA, Kent DB (1990) Rev Mineral 23:177–260

    Google Scholar 

Download references

Acknowledgments

This work was supported by the talent introduction project of Huangshan University (2013xkjq002) and the key research projects of provincial natural science foundation of department of Education of Anhui (KJ2010A312).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liping Qian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, L., Ma, M. & Cheng, D. Adsorption and desorption of uranium on nano goethite and nano alumina. J Radioanal Nucl Chem 303, 161–170 (2015). https://doi.org/10.1007/s10967-014-3352-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3352-2

Keywords

Navigation