Skip to main content
Log in

Synthesis and Characterization of Goethite Nanostructured powder: Application in the Simultaneous Removal of Co(II) and Ni(II) Ions from Aqueous Solution

  • Articles
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

This study investigates the adsorption efficiency of goethite nanostructured powder for the simultaneous removal of cobalt and nickel ions. The nanostructured powder sample was synthesized via a chemical precipitation technique and characterized using SEM, FTIR-ATR and XRD techniques. From batch adsorption studies, maximum absorption for Co(II) and Ni(II) ions occurred at an equilibrium contact time of 80 min, with an adsorbent mass of 0.1 g, and at pH=7. Co(II) ions showed greater affinity to the nanoparticles as compared to Ni(II). The maximum quantities adsorbed were recorded as 148.5 mg/g for Co(II) and 110.6 mg/g for Ni(II) ions. The best isotherm model fit for both metal ions was the Freundlich model indicating heterogeneity of the surface binding sites. The pseudo-second order kinetic model was the best-fit model: an indication of a strong chemical adsorption between the adsorbent surface and metal ions. The findings show that the goethite nanostructured powder is a very effective adsorbent material and prominent candidate for the simultaneous removal of cobalt and nickel ions from water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Parham, B. Zargar and R. Shiralipour., (2012) J. Hazard. Mater 205–206, 94–100.

    Article  CAS  Google Scholar 

  2. F. Sandra, B. Meredith, C. Bin, F. B. Jillian and Z. Hengzhong, (2012) RSC Adv. 2, 6768–6772.

    Article  Google Scholar 

  3. R. G. Pushpa, A.G. Annaselvi and P. Subramaniam, (2013) Int. J. Nanomater. Biostruct. 3, 26–30.

    Google Scholar 

  4. S. D. Mamadou, S. D. Jeremiah, S. Nora, S. Anita and S. Richard, Nanotechnology applications for clean water, eds. Nora S., Mamadou D., Jeremiah D., Anita S. and Richard S., (William Andrew Inc, USA, 2009), pp 585–587.

    Google Scholar 

  5. K. T. Dhermendra, J. Behari and S. Prasenjit, (2008)World Appl. Sci. J. 3, 417–433

    Google Scholar 

  6. M. C. Kimberly, L.U. Yunfeng, Z. Tonghua, Z. Jingjing, M. Gary and J. Vijay: Nanotechnology applications for clean water, eds. Savage N., Mamadou D., Jeremiah D., Anita S. and Richard S., (William Andrew Inc., USA, 2009), pp. 350.

    Google Scholar 

  7. J. Lodhia, G. Mandarano, J. Feris, S. F. Cowell, P. MacCallum (2009). Biomed. Imag. Intervention J., 6.

  8. M. G. Sajuna and S. Mohanty (2010). Int. J. of Eng. Sci. Tech., 2, 1–12.

    Google Scholar 

  9. I. Kazuharu and Y. Tsutomu (2002). Trans., 43, 2097–2103

    Google Scholar 

  10. G. Françoise, R. Philippe, L. François, R. Céline and C. Egle (2008). J. Phys. Chem. Solids, 10, 1016–1043.

    Google Scholar 

  11. A. Mariana, E. S. Elsa, and H. R. Elsa (2008). Am. Mineral., 93, 584–590.

    Article  Google Scholar 

  12. Y. Hexiong, L. Ren, T. D. Robert and C. Gelu (2006). Acta Cryst. 62, 250–252

    Google Scholar 

  13. R. M. Cornell and U. Schwertmann (2003). The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses. WILEY-VCH Verlag GmbH & Co., KGaA, Weinheim, pp. 141–143, 253–296.

    Google Scholar 

  14. M. Mamata, K. Rout, S. K. Gupta, P. Singh, S. Anand, and B. K. Mishra (2010). J Nanopart Res, 12, 681–686.

    Article  Google Scholar 

  15. H. Liu, T. Chen, L. Ray, and H. Frost (2013). Chemosphere xxx xxx–xxx.

    Google Scholar 

  16. H. Hala and H. Yousef (2012). Intl J. Eng. Sci. Technol., 4, 3018–3028

    Google Scholar 

  17. Yen-Hua Chen, Fu-An Li, (2010). J. Colloid Interface Sci., 347, 277–281

    Article  CAS  Google Scholar 

  18. V. D. Nguyen, J. Kynicky, P. Ambrozova and V. Adam (2017). Mater., 10, 783

    Article  Google Scholar 

  19. M. Mohapatra, L. Mohapatra, P. Singh, S. Anand and B.K. Mishra (2010). Intl. J. Eng. Sci. Technol., 8, 89–103

    Google Scholar 

  20. P. Apostoli, R. Cornelis, J. Duffus and D. Lison D: (2006) WHO 234, 70–158.

    Google Scholar 

  21. G. H. Lee, S. H. Kim, B. J. Choi and S. H. Huh. (2004) J. Korean Phys. Soc. 45, 1019–1024.

    Google Scholar 

  22. S. Brunauer, P. H. Emmett, E. Teller, (1938). J. Am. Chem. Soc. 60 (2), 309– 319.Ceram. Soc. 83, 1649–1657.

    Article  Google Scholar 

  23. G. Vijayakumar, R. Tamilarasan, and M. Dharmendirakumar (2012). J. Mater. Environ. Sci., 3, 157–170.

    CAS  Google Scholar 

  24. E. Yagmur, M. Ozmak, Z. Aktas, (2008) Fuel 87 3278–3285.

    Article  CAS  Google Scholar 

  25. M. Mohapatra and S. Anand, (2010) Int. J. Eng. Sci. Tech. 2 127–146.

    Google Scholar 

  26. Y. Zhao, F. Liu, X. Qin, (2017) Chemosphere 180 373–378

    Article  CAS  Google Scholar 

  27. H. A. Beyene and A.M. Alemayehu, (2013) Bull. Chem. Soc. Ethiop. 27 35–47

    Google Scholar 

  28. K. Maguie, N. Nsami, K. Daouda, C. Randy, K. Mbadcam, (2017). IRA Int. J. Appl. Sci. 8(1), 18–30.

    CAS  Google Scholar 

  29. S. E. Agarry and M. O. Aremu (2012). Br. Biotechnol J. 2(1): 26–4

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. R. Nangah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nangah, C.R., Merlain, T.G., Nsami, N.J. et al. Synthesis and Characterization of Goethite Nanostructured powder: Application in the Simultaneous Removal of Co(II) and Ni(II) Ions from Aqueous Solution. MRS Advances 3, 2675–2687 (2018). https://doi.org/10.1557/adv.2018.527

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2018.527

Navigation