Skip to main content
Log in

Adsorption of arsenic(V) from aqueous solutions by goethite/silica nanocomposite

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Silica nanoparticles were synthesized and coated with goethite, creating a nanocomposite. The nanocomposite was tested for removal of arsenic, As(V), from aqueous solutions. We used scanning electron microscopy (SEM), Fourier transform infrared spectrometry, and a Zetasizer to characterize particle size, surface morphology, functional groups, and surface charge of the nanocomposite. SEM results showed that the size of the synthesized silica nanoparticles ranged from 150 to 250 nm. Batch sorption studies were carried out on the adsorption of As(V) as a function of pH, contact time, initial concentration, and ionic strength. Maximum adsorption occurred at pH 3.0. The adsorption capacity did not change significantly with increasing ionic strength. A kinetics study revealed that adsorption of As(V) by the goethite/silica nanocomposite was rapid: Equilibrium was reached within 120 min. Adsorption kinetics followed a pseudo-second-order kinetic model. The adsorption data were analyzed by both the Langmuir and Freundlich isotherm models. The maximum adsorption capacity of goethite/silica nanocomposite for As(V) from the Langmuir isotherm was 17.64 mg g−1, which is larger than that of several other adsorbents. The nanocomposite adsorbent showed high efficiency in removing arsenic from aqueous solutions, even at low initial concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arrandale T (2002) EPA, the arsenic dictator. Governing 15:80

    Google Scholar 

  • Baskan MB, Pala A (2011) Removal of arsenic from drinking water using modified natural zeolite. Desalination 281:396–403

    Article  Google Scholar 

  • Basu T, Ghosh UC (2013) Nanao-structured iron(III)-cerium(IV) mixed oxide: synthesis, characterization and arsenic sorption kinetics in the presence of co-existing ions aiming to apply for high arsenic ground water treatment. Appl Surf Sci 283:471–481

    Article  CAS  Google Scholar 

  • Chakravarty S, Dureja V, Bhattacharyya G, Maity S, Bhattacharjee S (2002) Removal of arsenic from groundwater using low cost ferruginous manganese ore. Water Res 36:625–632

    Article  CAS  Google Scholar 

  • Chen R, Zhi C, Yang H, Bando Y, Zhang Z, Sugiur N, Golberg D (2011) Arsenic (V) adsorption on Fe3O4 nanoparticle-coated boron nitride nanotubes. J Colloid Interface Sci 359:261–268

    Article  CAS  Google Scholar 

  • Chowdhury SR, Yanful EK (2010) Arsenic and chromium removal by mixed magnetite-maghemite nanoparticles and the effect of phosphate on removal. J Environ Manage 91:2238–2347

    Article  CAS  Google Scholar 

  • Cooper AM, Hristovski KD, Moller T, Westerhoff P, Sylvester P (2010) The effect of carbon type on arsenic and trichloroethylene removal capabilities of iron (hydr)oxide nanoparticle-impregnated granular activated carbons. J Hazard Mater 183:381–388

    Article  CAS  Google Scholar 

  • Encyclopedia Britannica (2014) Goethite. In: Encyclopedia Britannica Online. Retrieved 23 Nov 2014 from http://www.britannica.com/EBchecked/topic/237093/goethite

  • Feng L, Cao M, Ma X, Zhu Y, Hu C (2012) Super paramagnetic high surface area Fe3O4 nanoparticles as adsorbents for arsenic removal. J Hazard Mater 217–218:436–439

    Google Scholar 

  • Freundlich H (1906) Uber die adsorption in losungen. Z Phys Chem 57:387–470

    Google Scholar 

  • Genc-Fuhrman H, Tjell JC, McConchie D (2004) Adsorption of arsenic from water using activated neutralized red mud. Environ Sci Technol 38:2428–2434

    Article  CAS  Google Scholar 

  • Ghosh M, Eddy G, Poinern J, Issa TB, Singh P (2012) Arsenic adsorption on goethite nanoparticles produced through hydrazine sulfate assisted synthesis method. Korean J Chem Eng 29:95–102

    Article  CAS  Google Scholar 

  • Giménez J, Martinez M, de Pablo J, Rovira M, Duro L (2007) Arsenic sorption onto natural hematite, magnetite, and goethite. J Hazard Mater 141:575–580

    Article  Google Scholar 

  • Gu Z, Fang J, Deng B (2005) Preparation and evaluation of GAC-based iron-containing adsorbents for arsenic removal. Environ Sci Technol 39:3833–3843

    Article  CAS  Google Scholar 

  • Han C, Li H, Pu H, Yu H, Deng L, Huang S, Luo Y (2013) Synthesis and characterization of mesoporous alumina and their performances for removing arsenic(V). Chem Eng J 217:1–9

    Article  CAS  Google Scholar 

  • Hang C, Li Q, Gao S, Shang JK (2012) As(III) and As(V) adsorption by hydrous zirconium oxide nanoparticles synthesized by a hydrothermal process followed with heat treatment. Ind Eng Chem Res 51:353–361

    Article  CAS  Google Scholar 

  • Hayes KF, Papelis C, Leckie JO (1988) Modeling ionic strength effects on anion adsorption at hydrous oxide/solution interfaces. J Colloid Interface Sci 125:717–726

    Article  CAS  Google Scholar 

  • Ho YS, McKay G (1998) Sorption of dye from aqueous solution by peat. Chem Eng J 70:115–124

    Article  CAS  Google Scholar 

  • Howard AG, Khdary NH (2005) Nanoscavenger based dispersion preconcentration; sub-micron particulate extractants for analyte collection and enrichment. Analyst 130:1432–1438

    Article  CAS  Google Scholar 

  • Hristovski K, Westerhoff PK, Crittenden JC, Olson LW (2008) Arsenate removal by nanostructured ZrO2 spheres. Environ Sci Technol 42:3786–3790

    Article  CAS  Google Scholar 

  • Hsu JC, Lin CJ, Liao CH, Chen ST (2008) Removal of As(V) and As(III) by reclaimed iron-oxide coated sands. J Hazard Mater 153:817–826

    Article  CAS  Google Scholar 

  • Kocanas-Atakl ZO, Yurum Y (2013) Synthesis and characterization of anatase nanoadsorbent and application in removal of lead, copper and arsenic from water. Chem Eng J 225:625–635

    Article  Google Scholar 

  • Lagergren S (1898) Zur theorie der sogenannten adsorption geloster stoffe, Kungliga Svenksa Vetenskapsakademiens. Handlingar 24:1–39

    Google Scholar 

  • Lakshmipathiraj P, Narasimhan BRV, Prabhakar S, Raju GB (2006) Adsorption of arsenate on synthetic goethite from aqueous solutions. J Hazard Mater 136:281–287

    Article  CAS  Google Scholar 

  • Langmuir I (1918) The adsorption of gases on plane surface glass, mica and platinum. J Am Chem Soc 40:1361–1368

    Article  CAS  Google Scholar 

  • Li Q, Xu XT, Cui H, Pang J, Wei ZB, Sun Z, Zhai J (2012) Comparison of two adsorbents for the removal of pentavalent arsenic from aqueous solutions. J Environ Manag 98:98–106

    Article  CAS  Google Scholar 

  • Li C, Xu W, Jia D, Liu X (2013) Removal of arsenic from drinking water by using the Zr-loaded resin. J Chem Eng Data 58:427–435

    Article  CAS  Google Scholar 

  • Liu X, Ao H, Xiong X, Xiao J, Liu J (2012) Arsenic removal from water by iron-modified bamboo charcoal. Water Air Soil Pollut 223:1033–1034

    Article  CAS  Google Scholar 

  • Mamindy-Pajany Y, Hurel C, Marmier N, Roméo M (2009) Arsenic adsorption onto hematite and goethite. C R Chim 12:876–881

    Article  CAS  Google Scholar 

  • Martinson CA, Reddy KJ (2009) Adsorption of arsenic (III) and arsenic (V) by cupric oxide nanoparticles. J Colloid Interface Sci 336:406–411

    Article  CAS  Google Scholar 

  • Mohan D, Pittaman CU (2007) Arsenic removal from water and wastewater using adsorbents—a critical review. J Hazard Mater 142:1–53

    Article  CAS  Google Scholar 

  • Nickson R, McArthur J, Burgess W, Ahmed KM, Ravenscroft P, Rahman M (1998) Arsenic poisoning of Bangladesh ground water. Nature 395:338

    Article  CAS  Google Scholar 

  • Pehlivan E, Tran TH, Ouedraogo WKI, Schmidt C, Zachmann D, Bahadir M (2013) Removal of As(V) from aqueous solutions by iron coated rice husk. Fuel Process Technol 106:511–517

    Article  CAS  Google Scholar 

  • Pontinus FW, Brown KG, Chen CJ (1994) Health implications of arsenic in drinking water. J Am Water Works Assoc 86:52–63

    Google Scholar 

  • Prucek R, Tucek J, Kolarik J, Filip J, Marusak Z, Sharma VK, Zboril R (2013) Ferrate(VI)-induced arsenite and arsenate removal by in situ structural incorporation into magnetic iron(III) oxide nanoparticles. Environ Sci Technol 47:3283–3292

    CAS  Google Scholar 

  • Ravenscroft P, Brammer H, Richards K (2009) Arsenic pollution: a global synthesis. Wiley, London

    Book  Google Scholar 

  • Reddy KJ, McDonald KJ, King H (2013) A novel arsenic removal process for water using cupric oxide nanoparticles. J Colloid Interface Sci 397:96–102

    Article  CAS  Google Scholar 

  • Saikia J, Saha B, Das G (2011) Efficient removal of chromate and arsenate from individual and mixed system by malachite nanoparticles. J Hazard Mater 186:575–582

    Article  CAS  Google Scholar 

  • Severn Trent Services (2014) Arsenic Removal Media—Bayoxide®. Severn Trent Services. Retrieved 23 Nov 2014 from https://www.severntrentservices.com/Drinking_Water_Treatment_Inorganic_Removal_Systems/Arsenic_Removal_Media_Bayoxide_prod_589.aspx

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behavior and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Article  CAS  Google Scholar 

  • Smith AH, Hopenhayn-Rich C, Bates MN, Goeden HM, Hertz-Picciotto I, Duggan HM, Wood R, Kosnett MJ, Smith MT (1992) Cancer risks from arsenic in drinking water. Environ Health Perspect 97:259–267

    Article  CAS  Google Scholar 

  • Stanic T, Dakovic A, Zivanovic A, Tomasevic-Xanovic M, Dondur V, Milicevic S (2009) Adsorption of arsenic (V) by iron (III)-modified natural zeolite tuff. Environ Chem Lett 7:161–166

    Article  CAS  Google Scholar 

  • Tang W, Li Q, Gao S, Shang JK (2011) Arsenic (III, V) removal from aqueous solution by ultra α-Fe2O3 nanoparticles synthesized from solvent thermal method. J Hazard Mater 192:131–138

    CAS  Google Scholar 

  • Thirunavukkarasu OS, Viraraghavan T, Subramanian KS (2001) Removal of arsenic in drinking water by iron oxide-coated sand and ferrihydrite-batch studies. Water Qual Res J Can 36:55–70

    CAS  Google Scholar 

  • Trujillo-Reyes J, Peralta-Videa JR, Gardea-Torresdey JL (2014) Supported and unsupported nanomaterials for water and soil remediation: are they a useful solution for worldwide pollution? J Hazard Mater 280:487–503

    Article  CAS  Google Scholar 

  • Tuutijarvi T, Lu J, Sillanpaa M, Chen G (2009) As(V) adsorption on maghemite nanoparticles. J Hazard Mater 166:1415–1420

    Article  CAS  Google Scholar 

  • USEPA (2002) Federal Register, vol 67, pp 78203–78209

  • Valencia-Trejo E, Valencia-Mendez M, Alfardo-Cueas-Villanueva R, Garnica-Romo MG, Cortes-Martinez R (2010) Effect of temperature on the removal of arsenate from aqueous solutions by titanium dioxide nanoparticles. J Appl Sci Environ Sanit 5:171–184

    CAS  Google Scholar 

  • Van Halem D, Heijman SGJ, Amy GL, van Dijk JC (2009) Subsurface arsenic removal for small-scale application in developing countries. Desalination 248:241–248

    Article  Google Scholar 

  • Wainipee W, Cuadros J, Sephton MA, Unsworth C, Gill MG, Strekopytov S, Weiss DJ (2013) The effects of oil on As(V) adsorption on illite, kaolinite, montmorillonite and chlorite. Geochim Cosmochim Acta 121:487–502

    Article  CAS  Google Scholar 

  • Xu Y, Axe L (2005) Synthesis and characterization of iron-oxide coated silica and its effect on metal adsorption. J Colloid Interface Sci 282:11–19

    Article  CAS  Google Scholar 

  • Xu W, Wang J, Wang L, Sheng G, Liu J, Yu H, Huang XJ (2013) Enhanced arsenic removal from water by hierarchically porous CeO2–ZrO2 nanospheres: role of surface- and structure-dependent properties. J Hazard Mater 260:498–507

    Article  CAS  Google Scholar 

  • Zhang T, Sun DD (2013) Removal of arsenic from water using multifunctional micro-/nano-structured MnO2 spheres and microfiltration. Chem Eng J 225:271–279

    Article  CAS  Google Scholar 

  • Zhang G, Ren Z, Zhang X, Chen J (2013) Nanostructured iron(III)–copper(II) binary oxide: a novel adsorbent for enhanced arsenic removal from aqueous solutions. Water Res 47:4022–4031

    Article  CAS  Google Scholar 

  • Zhu H, Jia Y, Wu X, Wang H (2009) Removal of arsenic from water by supported nano zero-valent iron on activated carbon. J Hazard Mater 172:1591–1596

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Mr. Kevin Olsen, Department of Chemistry, Montclair State University, Montclair, NJ, for recording the FT-IR spectra of adsorbents.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Sarkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attinti, R., Sarkar, D., Barrett, K.R. et al. Adsorption of arsenic(V) from aqueous solutions by goethite/silica nanocomposite. Int. J. Environ. Sci. Technol. 12, 3905–3914 (2015). https://doi.org/10.1007/s13762-015-0902-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-015-0902-2

Keywords

Navigation