Skip to main content
Log in

Positive solution for an elliptic system with critical exponent and logarithmic terms: the higher-dimensional cases

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we consider the coupled elliptic system with critical exponent and logarithmic terms:

$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta u=\lambda _{1}u+ \mu _1|u|^{2p-2}u+\beta |u|^{p-2}|v|^{p}u+\theta _1 u\log u^2, &{} \quad x\in \Omega ,\\ -\Delta v=\lambda _{2}v+ \mu _2|v|^{2p-2}v+\beta |u|^{p}|v|^{p-2}v+\theta _2 v\log v^2, &{}\quad x\in \Omega ,\\ u=v=0, &{}\quad x \in \partial \Omega , \end{array}\right. } \end{aligned}$$

where \(\Omega \subset {\mathbb R}^N\) is a bounded smooth domain, \(2p=2^*=\frac{2N}{N-2}\) is the Sobolev critical exponent. When \(N \ge 5\), for different ranges of \(\beta ,\lambda _{i},\mu _i,\theta _{i}\), \(i=1,2\), we obtain existence and nonexistence results of positive solutions via variational methods. The special case \(N=4 \) was studied by Hajaiej et al. (Positive solution for an elliptic system with critical exponent and logarithmic terms, arXiv:2304.13822, 2023). Note that for \(N\ge 5\), the critical exponent is given by \(2p\in \left( 2,4\right) \); whereas for \(N=4\), it is \(2p=4\). In the higher-dimensional cases \(N\ge 5\) brings new difficulties, and requires new ideas. Besides, we also study the Brézis–Nirenberg problem with logarithmic perturbation

$$\begin{aligned} -\Delta u=\lambda u+\mu |u|^{2p-2}u+\theta u \log u^2 \quad \text { in }\Omega , \end{aligned}$$

where \(\mu >0, \theta <0\), \(\lambda \in {\mathbb R}\), and obtain the existence of positive local minimum and least energy solution under some certain assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

No data was used for the research described in the article.

References

  1. Alfaro, M., Carles, R.: Superexponential growth or decay in the heat equation with a logarithmic nonlinearity. Dyn. Partial Differ. Equ. 14, 343–358 (2017)

    Article  MathSciNet  Google Scholar 

  2. Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)

    Article  MathSciNet  Google Scholar 

  3. Bialynicki-Birula, I., Mycielski, J.: Wave equations with logarithmic nonlinearities. Bull. Acad. Polon. Sci. 23, 461–466 (1975)

    MathSciNet  Google Scholar 

  4. Bialynicki-Birula, I., Mycielski, J.: Nonlinear wave mechanics. Ann. Phys. 100, 62–93 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  5. Brézis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math. 36, 437–477 (1983)

    Article  MathSciNet  Google Scholar 

  6. Brézis, H., Lieb, E.H.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88, 486–490 (1983)

    Article  MathSciNet  Google Scholar 

  7. Carles, R., Gallagher, I.: Universal dynamics for the defocusing logarithmic Schrodinger equation. Duke Math. J. 167, 1761–1801 (2018)

    Article  MathSciNet  Google Scholar 

  8. Carles, R., Pelinovsky, D.: On the orbital stability of Gaussian solitary waves in the log-KdV equation. Nonlinearity 27, 3185–3202 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  9. Chen, Z.J., Zou, W.M.: Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent. Arch. Ration. Mech. Anal. 205, 515–551 (2012)

    Article  MathSciNet  Google Scholar 

  10. Chen, Z.J., Zou, W.M.: Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent: higher dimensional case. Calc. Var. Partial Differ. Equ. 52, 423–467 (2015)

    Article  Google Scholar 

  11. Colin, M., Jeanjean, L.: Solutions for a quasilinear Schrodinger equation: a dual approach. Nonlinear Anal. 56, 213–226 (2004)

    Article  MathSciNet  Google Scholar 

  12. Deng, Y.B., He, Q.H., Pan, Y.Q., Zhong, X.X.: The existence of positive solution for an elliptic problem with critical growth and logarithmic perturbation. Adv. Nonlinear Stud. 23, 20220049 (2023)

    Article  MathSciNet  Google Scholar 

  13. Hajaiej, H., Liu, T.H., Song, L.J., Zou, W.M.: Positive solution for an elliptic system with critical exponent and logarithmic terms. arXiv:2304.13822 (2023)

  14. Lieb, E., Loss, M.: Analysis. Graduate Studies in Mathematics, vol. 14. American Mathematical Society, Providence (2001)

    Google Scholar 

  15. Lin, T.C., Wei, J.C.: Ground state of \(N\) coupled nonlinear Schrödinger equations in \(\mathbb{R} ^n, n\le 3\). Commun. Math. Phys. 255, 629–653 (2005)

    Article  ADS  Google Scholar 

  16. Liu, T.H., You, S., Zou, W.M.: Least energy positive solutions for \(d\)-coupled Schrödinger systems with critical exponent in dimension three. J. Differ. Equ. 367, 40–78 (2023)

    Article  ADS  Google Scholar 

  17. Poppenberg, M., Schmitt, K., Wang, Z.-Q.: On the existence of soliton solutions to quasilinear Schrodinger equations. Calc. Var. Partial Differ. Equ. 14, 329–344 (2002)

    Article  MathSciNet  Google Scholar 

  18. Wang, Z.-Q., Zhang, C.: Convergence from power-law to logarithm-law in nonlinear scalar field equations. Arch. Rational Mech. Anal. 231, 45–61 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  19. Wei, S.: Multiple solutions for logarithmic Schrödinger equations. Nonlinearity 32, 2201–2225 (2019)

    Article  MathSciNet  Google Scholar 

  20. Vazquez, J.: A strong maximum principle for some quasilinear elliptic equations. Appl. Math. Optim. 12, 191–202 (1984)

    Article  MathSciNet  Google Scholar 

  21. Willem, M.: Minimax Theorems. Birkhäuser, Boston (1996)

    Book  Google Scholar 

  22. Ye, H.Y., Peng, Y.F.: Positive least energy solutions for a coupled Schrödinger system with critical exponent. J. Math. Anal. Appl. 417, 308–326 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is partially supported by NSFC (No.12171265). The authors wish to thank the anonymous referee so very much for his/her valuable suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianhao Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported NSFC (No.12171265).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajaiej, H., Liu, T. & Zou, W. Positive solution for an elliptic system with critical exponent and logarithmic terms: the higher-dimensional cases. J. Fixed Point Theory Appl. 26, 11 (2024). https://doi.org/10.1007/s11784-024-01099-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11784-024-01099-7

Keywords

Mathematics Subject Classification

Navigation