Skip to main content
Log in

Assessment of water quality and safety based on multi-statistical analyses of nutrients, biochemical indexes and heavy metals

水质及安全测评基于对营养元素、生化指标和重金属元素的多元统计分析

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The purpose of this research was to better understand the water quality status of the Xiangjiang River, China, and to evaluate the risks posed by the river water. Precisely, ten water quality parameters including pH, dissolved oxygen (DO), Escherichia coli (E. coli), potassium permanganate index (CODMn), dichromate oxidizability (CODcr), five-day biochemical oxygen demand (BOD5), ammonia nitrogen (NH4+-N), total phosphorus (TP) and fluoride (F) as well as metal(loid)s (Pb, Hg, Cd, As, Zn, Cu and Se) were monitored monthly in 2016 at 12 sampling sites throughout the Hengyang section of the Xiangjiang River. Concentrations of all parameters were presented according to rainy and dry seasons. They were compared with Chinese surface water standards and WHO drinking water limits to assess the sustainability of the river water status. Principal component analysis (PCA) revealed different pollution sources in different seasons. Dual hierarchical cluster analysis (DHCA) was applied to further classify the water quality variables and sampling sites. Besides, a risk assessment was introduced to evaluate the carcinogenic and non-carcinogenic concerns of heavy metal(loid)s to human health. This research will help to optimize water monitoring locations and establish pollution reduction strategies on the preservation of public safety.

摘要

为更好地了解湘江的水质状况, 并评估河水带来的风险, 于2016 年按月采样了湘江衡阳段的 12 个采样点, 并分析了各采样点中7 种重金属元素(Pb, Hg, Cd, As, Zn, Cu, Se)含量以及9 种相关水质 参数(pH, DO, E. coli, CODMn CODCr, BOD5, NH4 +-N, TP, F)。按照雨季和干旱季节分析了参数, 并将其 与中国标准和世界卫生组织饮用水限值进行了比较, 以评估河水状况的可持续性。主成分分析(PCA) 显示了不同季节的不同污染源。双重聚类分析(DHCA)对水质变量和采样地点进行了进一步分类。此 外, 引入了人类健康风险评估来评估重金属的健康风险。这项研究将有助于优化水质监测点的建设, 并建立与维护公共卫生有关的污染修复策略。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CHAI Li-yuan, WANG Zheng-xing, WANG Yun-yan, YANG Zhi-hui, WANG Hai-ying, WU Xie. Ingestion risks of metals in groundwater based on TIN model and dose-response assessment-A case study in the Xiangjiang watershed, central-south China [J]. Science of the Total Environment, 2010, 408(16): 3118–3124. DOI: https://doi.org/10.1016/j.scitotenv.2010.04.030.

    Article  Google Scholar 

  2. WANG Zheng-xing, CHAI Li-yuan, WANG Yun-yan, YANG Zhi-hui, WANG Hai-ying, WU Xie. Potential health risk of arsenic and cadmium in groundwater near Xiangjiang River, China: A case study for risk assessment and management of toxic substances [J]. Environmental Monitoring and Assessment, 2011, 175(1–4): 167–173. DOI: https://doi.org/10.1007/s10661-010-1503-7.

    Article  Google Scholar 

  3. CHAI Li-yuan, LI Huan, YANG Zhi-hui, MIN Xiao-bo, LIAO Qi, LIU Yi, MEN Shui-hui, YAN Ya-nan, XU Ji-xin. Heavy metals and metalloids in the surface sediments of the Xiangjiang River, Hunan, China: Distribution, contamination, and ecological risk assessment [J]. Environmental Science and Pollution Research, 2017, 24(1): 874–885. DOI: https://doi.org/10.1007/s11356-016-7872-x.

    Article  Google Scholar 

  4. MAS-PLA J, MENCIÓ A. Groundwater nitrate pollution and climate change: learnings from a water balance-based analysis of several aquifers in a western Mediterranean region (Catalonia) [J]. Environmental Science and Pollution Research, 2018, 1: 2184–2202. DOI: https://doi.org/10.1007/s11356-018-1859-8.

    Google Scholar 

  5. ADHIKARI A, HANSEN A J. Climate and water balance change among public, private, and tribal lands within greater wild land ecosystems across north central USA [J]. Climatic Change, 2019, 1: 551–567. DOI: https://doi.org/10.1007/s10584-018-2351-7.

    Article  Google Scholar 

  6. NELLEMANN C, HAIN S, ALDER J. In dead water: merging of climate change with pollution, over-harvest, and infestations in the world’s fishing grounds [M]. Arendal: United Nations Environment Programme, 2008.

    Google Scholar 

  7. KIBRIA G. World rivers in crisis: Water quality and water dependent biodiversity are at risk-threats of pollution, climate change & dams development [J]. Research Gate, 2015, 1: 1–11. DOI: https://doi.org/10.13140/RG.2.1.1791.5365/2.

    Google Scholar 

  8. FUNARI E, MANGANELLI M, SINISI L. Impact of climate change on waterborne diseases [J]. Annali dell’Istituto Superiore di Sanita, 2012, 48(4): 473–487. DOI: https://doi.org/10.4415/ANN_12_04_13.

    Article  Google Scholar 

  9. SHEAHAN D. Impacts of climate change on pollution [EB/OL]. [2006] http://www.mccip.org.uk/media/1399/pollution-report-from-cefas.pdf.

  10. ALAM M J, DUTTA D. Predicting climate change impact on nutrient pollution in waterways: A case study in the upper catchment of the Latrobe River, Australia [J]. Ecohydrology, 2013, 6(1): 73–82. DOI: https://doi.org/10.1002/eco.282.

    Article  Google Scholar 

  11. LIN Hui-ju, CHEN Lei-lei, LI Hai-pu, LUO Zhou-fei, LU Jing, YANG Zhao-guang. Pharmaceutically active compounds in the Xiangjiang River, China: Distribution pattern, source apportionment, and risk assessment [J]. Science of the Total Environment, 2018, 1: 975–984. DOI: https://doi.org/10.1016/j.scitotenv.2018.04.267.

    Article  Google Scholar 

  12. WU Yi-ping, LIU Shu-guang, YAN Wen-de, XIA Jiang-zhou, XIANG Wen-hua, WANG Ke-lin, LUO Qiao, FU Wei, YUAN Wen-ping. Climate change and consequences on the water cycle in the humid Xiangjiang River Basin, China [J]. Stochastic Environmental Research and Risk Assessment, 2016, 30(1): 225–235. DOI: https://doi.org/10.1007/s00477-015-1073-x.

    Article  Google Scholar 

  13. SIVAKUMAR B. Global climate change and its impacts on water resources planning and management: assessment and challenges [J]. Stochastic Environmental Research and Risk Assessment, 2011, 25(4): 583–600. DOI: https://doi.org/10.1007/s00477-010-0423-y.

    Article  Google Scholar 

  14. CAI Bei-ming, ZHANG Bing, BI Jun, ZHANG Wen-jing. Energy’s thirst for water in china [J]. Environmental Science and Technology, 2014, 48(20): 11760–11768. DOI: https://doi.org/10.1021/es502655m.

    Article  Google Scholar 

  15. TANG Jing-wen, CHAI Li-yuan, LI Huan, YANG Zhi-hui, YANG Wei-chun. A 10-year statistical analysis of heavy metals in river and sediment in Hengyang segment, Xiangjiang river basin, China [J]. Sustainability, 2018, 10(4): 1057. DOI: https://doi.org/10.3390/su10041057.

    Article  Google Scholar 

  16. FEI Jiang-chi, MIN Xiao-bo, WANG Zhen-xing, PANG Zhi-hua, LIANG Yan-jie, KE Yong. Health and ecological risk assessment of heavy metals pollution in an antimony mining region: A case study from South China [J]. Environmental Science and Pollution Research, 2017, 24(35): 27573–27586. DOI:https://doi.org/10.1007/s11356-017-0310-x.

    Article  Google Scholar 

  17. TANG Jing-wen, LIAO Ying-ping, YANG Zhui-hui, CHAI Li-yuan, YANG Wei-chun. Characterization of arsenic serious-contaminated soils from Shimen realgar mine area, the Asian largest realgar deposit in China [J]. Journal of Soils and Sediments, 2016, 16(5): 1519–1528. DOI: https://doi.org/10.1007/s11368-015-1345-6.

    Article  Google Scholar 

  18. WANG Zhen-xing, CHEN Jian-qun, CHAI Li-yuan, YANG Zhi-hui, HUANG Shun-hong, ZHENG Yu. Environmental impact and site-specific human health risks of chromium in the vicinity of a ferro-alloy manufactory, China [J]. Journal of Hazardous Materials, 2011, 190(1–3): 980–985. DOI: https://doi.org/10.1016/j.jhazmat.2011.04.039.

    Article  Google Scholar 

  19. Ministry of Environmental Protection of the People’s Republic of China. 2016 Report on the State of the Environment in China [R]. Beijing: MEP, 2017. (in Chinese)

    Google Scholar 

  20. Ministry of Environmental Protection of the People’s Republic of China. The water pollution prevention and control plan for major River Basins (2016–2020) [R]. Beijing: MEP, 2017. (in Chinese)

    Google Scholar 

  21. ZHANG Lei, QIN Yan-wen, ZHENG Bing-hui, LIN Tian, LI Yuan-yuan. Polycyclic aromatic hydrocarbons in the sediments of Xiangjiang River in south-central China: occurrence and sources [J]. Environmental Earth Sciences, 2013, 69(1): 119–125. DOI: https://doi.org/10.1007/s12665-012-1939-x.

    Article  Google Scholar 

  22. LI Z. “No.1 Key Project” Controlling Xiangjiang pollution [EB/OL]. [2016]. http://politics.gmw.cn/2016-04/26/content_19860306.htm.

  23. ZENG Xiao-xia, LIU Yun-guo, YOU Shao-hong, ZENG Guang-ming, TAN Xiao-fei, HU Xin-jiang, XI Hu, HUANG Lei, LI Fei. Spatial distribution, health risk assessment and statistical source identification of the trace elements in surface water from the Xiangjiang River, China [J]. Environmental Science and Pollution Research, 2015, 22(12): 9400–9412. DOI: https://doi.org/10.1007/s11356-014-4064-4.

    Article  Google Scholar 

  24. ZENG G M, YUAN X Z, YIN Y Y, YANG C P. A two-dimensional water-quality model for a winding and topographically complicated river [J]. Journal of Environmental Management, 2001, 61(1): 113–121. DOI: https://doi.org/10.1006/jema.2000.0401.

    Article  Google Scholar 

  25. WU Yun-qing, SHAO Dong-guo, XIAO Yi. A comprehensive benefit evaluation for the Xiangjiang River basin rehabilitation project [C]// Proceedings of the International Association of Hydrological Sciences and the International Water Resources Association Conference. Guangzhou, China: International Association of Hydrological Science, 2008: 8–10.

    Google Scholar 

  26. National Health Commission of the People’s Republic of China. Standard examination method for drinking water-collection and preservation of water samples (GB/T 5750.2-2006) [R]. Beijing: NHC, 2006. (in Chinese)

    Google Scholar 

  27. Ministry of Environmental Protection of the People’s Republic of China. Water quality-determination of total arsenic-silver diethyldithiocarbamate spectrophotometric method (GB/T7485-1987) [R]. Beijing: MEP, 1987. (in Chinese)

    Google Scholar 

  28. Ministry of Environmental Protection of the People’s Republic of China. Water quality-determination of copper, zinc, lead and cadmium-atomic absorption spectrometry (GB/T 7475-1987) [R]. Beijing: MEP, 1987. (in Chinese)

    Google Scholar 

  29. Ministry of Environmental Protection of the People’s Republic of China. Water quality-determination of total mercury-cold atomic absorption spectrophotometry (HJ597-2011) [R]. Beijing: MEP, 2011. (in Chinese)

    Google Scholar 

  30. Ministry of Environmental Protection of the People’s Republic of China. Water quality-determination of 65 elements-inductively coupled plasma-mass spectrometry (HJ700-2014) [R]. Beijing: MEP, 2014. (in Chinese)

    Google Scholar 

  31. Ministry of Environmental Protection of the People’s Republic of China. Water quality-determination of Ph value-glass electrode method (GB/T 6920-1986) [R]. Beijing: MEP, 1986. (in Chinese)

    Google Scholar 

  32. Ministry of Environmental Protection of the People’s Republic of China. Water quality-determination of dissolved oxygen-electrochemical probe method (HJ 506–2009) [R]. Beijing: MEP, 2009. (in Chinese)

    Google Scholar 

  33. Ministry of Environmental Protection of the People’s Republic of China. Water quality-determination of permanganate index (GB/T 11892-1989) [R]. Beijing: MEP, 1989. (in Chinese)

    Google Scholar 

  34. Ministry of Environmental Protection of the People’s Republic of China. Water quality-determination of chemical oxygen demand-dichromate method (GB/T 11914-1989) [R]. Beijing: MEP, 1989. (in Chinese)

    Google Scholar 

  35. Ministry of Environmental Protection of the People’s Republic of China. Water quality-determination of biochemical oxygen demand after 5 days-dilution and seeding method (HJ 505–2009) [R]. Beijing: MEP, 2009. (in Chinese)

    Google Scholar 

  36. Ministry of Environmental Protection of the People’s Republic of China. Water quality-determination of ammonia nitrogen-salicylic acid spectrophotometry (HJ 536–2009) [R]. Beijing: MEP, 2009. (in Chinese)

    Google Scholar 

  37. Ministry of Environmental Protection of the People’s Republic of China. Water quality-determination of total phosphorus-ammonium molybdate spectrophotometric method (GB/T 11893-1989) [R]. Beijing: MEP, 1989. (in Chinese)

    Google Scholar 

  38. Ministry of Environmental Protection of the People’s Republic of China. Water quality-Determination of inorganic anions-Ion chromatography method (HJ/T84-2001) [R]. Beijing: MEP, 2001. (in Chinese)

    Google Scholar 

  39. Ministry of Environmental Protection of the People’s Republic of China. Water and wastewater monitoring and analysis method [R]. Fourth edition. Beijing: China Environmental Science Press, 2002. (in Chinese)

    Google Scholar 

  40. BENGRAÏNE K, MARHABA T F. Using principal component analysis to monitor spatial and temporal changes in water quality [J]. Journal of Hazardous Materials, 2003, 100(1–3): 179–195. DOI: https://doi.org/10.1016/S0304-3894(03)00104-3.

    Article  Google Scholar 

  41. WU Jian-hua, LI Pei-yue, QIAN Hui, DUAN Zhao, ZHANG Xue-di. Using correlation and multivariate statistical analysis to identify hydrogeochemical processes affecting the major ion chemistry of waters: Case study in Laoheba phosphorite mine in Sichuan, China [J]. Arabian Journal of Geosciences, 2014, 7(10): 3973–3982. DOI: https://doi.org/10.1007/s12517-013-1057-4.

    Article  Google Scholar 

  42. WU Jian-hua, LI Pei-yue, WANG Dan, REN Xiao-fei, WEI Miao-jun. Statistical and multivariate statistical techniques to trace the sources and affecting factors of groundwater pollution in a rapidly growing city on the Chinese Loess Plateau [J]. Human and Ecological Risk Assessment, 2019: 1–19. DOI: https://doi.org/10.1080/10807039.2019.1594156.

  43. LI Pei-yue, TIAN Rui, LIU Rong. Solute geochemistry and multivariate analysis of water quality in the Guohua phosphorite mine, Guizhou province, China [J]. Exposure and Health, 2019, 11(2): 81–94. DOI: https://doi.org/10.1007/s12403-018-0277-y.

    Article  Google Scholar 

  44. TZIRITIS E P, DATTA P S, BARZEGAR Rahim. Characterization and assessment of groundwater resources in a complex hydrological basin of central Greece (Kopaida basin) with the joint use of hydrogeochemical analysis, multivariate statistics and stable isotopes [J]. Aquatic Geochemistry, 2017, 23(4): 271–298. DOI: https://doi.org/10.1007/s10498-017-9322-x.

    Article  Google Scholar 

  45. BARZEGAR R, ASGHARI M A, ADAMOWSKI J, HOSSEIN A. Assessing the potential origins and human health risks of trace elements in groundwater: A case study in the Khoy plain, Iran [J]. Environmental Geochemistry and Health, 2019, 1: 981–2001. DOI: https://doi.org/10.1007/s10653-018-0194-9.

    Article  Google Scholar 

  46. BARZEGAR R, ASGHARI M A, SOLTANI S, FIJANI E, TZIRITIS E, KAZEMIAN N. Heavy metal(loid)s in the groundwater of Shabestar Area (NW Iran): Source identification and health risk assessment [J]. Exposure and Health, 2019, 1: 251–265. DOI: https://doi.org/10.1007/s12403-017-0267-5.

    Article  Google Scholar 

  47. SIMEONOV V, STRATIS J A, SAMARA C, ZACHARIADIS G, VOUTSA D, ANTHEMIDIS A, SOFONIOU M, KOUIMTZZIS T. Assessment of the surface water quality in Northern Greece [J]. Water Research, 2003, 37(17): 4119–4124. DOI: https://doi.org/10.1016/S0043-1354(03)00398-1.

    Article  Google Scholar 

  48. ZHANG Qi, LI Zhong-wu, ZENG Guang-ming, LI Jiang-bing, YUAN Qing-shui, WANG Ya-mei, YE Fang-yi. Assessment of surface water quality using multivariate statistical techniques in red soil hilly region: a case study of Xiangjiang watershed, China [J]. Environmental Monitoring and Assessment, 2009, 152(1–4): 123–131. DOI: https://doi.org/10.1007/s10661-008-0301-y.

    Article  Google Scholar 

  49. SINGH K P, MALIK A, MOHAN D, SINHA S. Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—A case study [J]. Water Research, 2004, 38(18): 3980–3992. DOI: https://doi.org/10.1016/j.watres.2004.06.011.

    Article  Google Scholar 

  50. LI Si-yue, ZHANG Quan-fa. Risk assessment and seasonal variations of dissolved trace elements and heavy metals in the Upper Han River, China [J]. Journal of Hazardous Materials, 2010, 181(1–3): 1051–1058. DOI: https://doi.org/10.1016/j.jhazmat.2010.05.120.

    Google Scholar 

  51. LIU Chen-wuing, LIN Kao-hung, KUO Yi-ming. Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan [J]. Science of the Total Environment, 2003, 313(1–3): 77–89. DOI: https://doi.org/10.1016/S0048-9697(02)00683-6.

    Article  Google Scholar 

  52. LAURSEN J, MILMAN N, PIND N, PEDERSEN H, MULVAD G. The association between content of the elements S, Cl, K, Fe, Cu, Zn and Br in normal and cirrhotic liver tissue from Danes and Greenlandic Inuit examined by dual hierarchical clustering analysis [J]. Journal of Trace Elements in Medicine and Biology, 2014, 28(1): 50–55. DOI: https://doi.org/10.1016/j.jtemb.2013.08.003.

    Article  Google Scholar 

  53. RANJBAR J A, RIYAHI B A, SHADMEHRI T A, JADOT C. Spatial distribution, ecological and health risk assessment of heavy metals in marine surface sediments and coastal seawaters of fringing coral reefs of the Persian Gulf, Iran [J]. Chemosphere, 2017, 1: 1090–1111. DOI: https://doi.org/10.1016/j.chemosphere.2017.07.110.

    Article  Google Scholar 

  54. WU B, ZHAO D Y, JIA H Y, ZHANG Y, ZHANG X X, CHENG S P. Preliminary risk assessment of trace metal pollution in surface water from Yangtze River in Nanjing section, China [J]. Bulletin of Environmental Contamination and Toxicology, 2009, 82(4): 405–409. DOI: https://doi.org/10.1007/s00128-008-9497-3.

    Article  Google Scholar 

  55. Ministry of Environmental Protection of the People’s Republic of China. Technical guidelines for risk assessment of contaminated sites (HJ25.3-2014) [R]. Beijing: MEP, 2014. http://kjs.mee.gov.cn/hjbhbz/bzwb/jcffbz/201402/t20140226_268358.shtml. (in Chinese)

    Google Scholar 

  56. United States Environmental Protection Agency (USEPA). Risk assessment guidance for superfund (RAGS). Volume I. Human health evaluation manual (HHEM). Part E. Supplemental guidance for dermal risk assessment [EB/OL]. [2004-07]. https://www.epa.gov/risk/risk-assessment-guidance-superfund-rags-part.

  57. RODRIGUEZ-PROTEAU R, GRANT R. Toxicity evaluation and human health risk assessment of surface and ground water contaminated by recycled hazardous waste materials [M]// Kassim T.A. Water pollution. Berlin: Springer, 2005. DOI: https://doi.org/10.1007/b11434.

    Google Scholar 

  58. OSBORNE P. Water pollution [J]. Utilities Law Review, 1999, 10(1): 17–19. DOI: https://doi.org/10.1002/(SICI)1099-1808(199901/02)10:1<17::AID-ULR120>3.0.CO;2-W.

    Article  Google Scholar 

  59. State Environment Protection Administration of China, Environment quality standard for surface water (GB3838-2002) [R]. Beijing: SEPAC, 2002. (in Chinese)

    Google Scholar 

  60. World Health Organization. Guidelines for drinking-water quality, 4th edition, incorporating the 1st addendum [R]. Geneva, WHO, 2017. https://www.who.int/water_sanitation_health/publications/drinking-water-quality-guidelines-4-including-1st-addendum/en/.

    Google Scholar 

  61. GIRI S, SINGH A K. Risk assessment, statistical source identification and seasonal fluctuation of dissolved metals in the Subarnarekha river, India [J]. Journal of Hazardous Materials, 2014, 1: 305–314. DOI: https://doi.org/10.1016/j.jhazmat.2013.09.067.

    Article  Google Scholar 

  62. CHEN Yan, WANG Ling-qing, LIANG Tao, XIAO Jun, LI Jing, WEI Hai-cheng, LIN Lin. Major ion and dissolved heavy metal geochemistry, distribution, and relationship in the overlying water of Dongting Lake, China [J]. Environmental Geochemistry and Health, 2019, 1: 1091–1104. DOI: https://doi.org/10.1007/s10653-018-0204-y.

    Article  Google Scholar 

  63. QU Li-yin, HUANG Hong, XIA Fang, LIU Yuan-yuan, DAHLGREN Randy A, ZHANG Ming-hua, MEI Kun. Risk analysis of heavy metal concentration in surface waters across the rural-urban interface of the Wen-Rui Tang River, China [J]. Environmental Pollution, 2018, 1: 639–649. DOI: https://doi.org/10.1016/j.envpol.2018.02.020.

    Article  Google Scholar 

  64. NKWOJI J A, IGBO J K, ADELEYE A O, OBIENU J A, TONY-OBIAGWU M J. Implications of bioindicators in ecological health: Study of a coastal lagoon, Lagos, Nigeria [J]. Agriculture & Biology Journal of North America, 2010, 1(4): 683–689.

    Google Scholar 

  65. LI Huan, CHAI Li-yuan, YANG Zhi-hui, LIAO Qi, LIU Yi, OUYANG Bin. Seasonal and spatial contamination statuses and ecological risk of sediment cores highly contaminated by heavy metals and metalloids in the Xiangjiang River [J]. Environmental Geochemistry and Health, 2019, 1: 1617–1633. DOI: https://doi.org/10.1007/s10653-019-00245-2.

    Article  Google Scholar 

  66. LI Huan, YANG Jin-qin, YE Bin, JIANG dong-yi. Pollution characteristics and ecological risk assessment of 11 unheeded metals in sediments of the Chinese Xiangjiang River [J]. Environmental Geochemistry and Health, 2019, 1: 1459–1472. DOI: https://doi.org/10.1007/s10653-018-0230-9.

    Article  Google Scholar 

  67. LI Fei, ZHANG Jing-dong, JIANG Wei, LIU Chao-yang, ZHANG Zhong-min, ZHANG Cheng-de, ZENG Guang-ming. Spatial health risk assessment and hierarchical risk management for mercury in soils from a typical contaminated site, China [J]. Environmental Geochemistry and Health, 2017, 39(4): 923–934. DOI: https://doi.org/10.1007/s10653-016-9864-7.

    Article  Google Scholar 

  68. SUN Guang-yi, LI Zhong-gen, LIU Ting, CHEN Ji, WU Ting-ting, FENG Xin-bin. Rare earth elements in street dust and associated health risk in a municipal industrial base of central China [J]. Environmental Geochemistry and Health, 2017, 39(6): 1469–1486. DOI: https://doi.org/10.1007/s10653-017-9982-x.

    Article  Google Scholar 

  69. HE Xiao-dong, LI Pei-yue. Surface water pollution in the middle Chinese loess plateau with special focus on hexavalent chromium (Cr6+): Occurrence, sources and health risk [J]. Exposure and Health, 2020: 1–17. DOI: https://doi.org/10.1007/s12403-020-00344-x.

  70. LI Pei-yue, FENG Wei, XUE Chen-yang, TIAN Rui, WANG Si-ting. Spatiotemporal variability of contaminants in lake water and their risks to human health: A case study of the Shahu lake tourist area, northwest China [J]. Exposure and Health, 2016, 1: 213–225. DOI: https://doi.org/10.1007/s12403-016-0237-3.

    Google Scholar 

  71. WU Jian-hua, ZHANG Yu-xin, ZHOU Hui. Groundwater chemistry and groundwater quality index incorporating health risk weighting in Dingbian County, Ordos basin of northwest China [J]. Geochemistry, 2020. DOI: https://doi.org/10.1016/j.chemer.2020.125607.

  72. WU Jian-hua, ZHOU Hui, HE Song, ZHANG Yu-xin. Comprehensive understanding of groundwater quality for domestic and agricultural purposes in terms of health risks in a coal mine area of the Ordos basin, north of the Chinese Loess Plateau [J]. Environmental Earth Sciences, 2019, 1: 446. DOI: https://doi.org/10.1007/s12665-019-8471-1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-yan Wang  (王云燕).

Additional information

Foundation item: Projects(2018YFC1801805, 2018YFC1903301) supported by National Key R&D Program of China; Project(51825403) supported by National Science Fund for Distinguished Young Scholars, China; Project(2019SK2281) supported by Key R&D Program of Hunan Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Dy., Wang, Yy., Liao, Q. et al. Assessment of water quality and safety based on multi-statistical analyses of nutrients, biochemical indexes and heavy metals. J. Cent. South Univ. 27, 1211–1223 (2020). https://doi.org/10.1007/s11771-020-4361-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4361-7

Key words

关键词

Navigation