Skip to main content

Advertisement

Log in

Major ion and dissolved heavy metal geochemistry, distribution, and relationship in the overlying water of Dongting Lake, China

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Deteriorating lake water quality has become a serious environmental issue around the globe. Heavy metals dissolved in the overlying water of lakes are notably more toxic than those found in lake sediment. Given this, we sought to better understand the characteristics of particular major ion and dissolved heavy metal in Dongting Lake—the second largest freshwater lake in China. Overlying water samples were collected from Dongting Lake to investigate the major ion geochemistry and to examine the relationship between the major ions and dissolved heavy metals. Chemical analysis of the overlying water showed that the average cation concentration was the highest for Ca2+, followed by Mg2+, Na+, and K+. Similarly, the highest anion concentration was SO42−, followed by Cl, NO3, and HCO3. Total dissolved solids in the overlying water of Dongting Lake ranged from 66.19 to 159.20 mg/L, with an average value of 93.13 mg/L. The predominant hydrochemical type was Ca–SO4. The mean concentrations of dissolved heavy metal in both surface and deep waters decreased in the following order: Zn > Cr > Ni > Cu > Pb > Cd. Importantly, all of the selected heavy metals tested in the overlying water were lower than the corresponding toxicity reference values. Co-occurrence network analyses were performed and compared the correlations between all measured major ions and heavy metals. Results of the subsequent principal component analyses revealed that heavy metal levels in the aquatic environment primarily originated from natural processes and were enhanced by anthropogenic activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ako, A. A., Shimada, J., Hosono, T., Kagabu, M., Ayuk, A. R., Nkeng, G. E., et al. (2012). Spring water quality and usability in the Mount Cameroon area revealed by hydrogeochemistry. Environmental Geochemistry and Health, 34(5), 615–639.

    Article  CAS  Google Scholar 

  • Altındağ, A., & Yiğit, S. (2005). Assessment of heavy metal concentrations in the food web of lake Beyşehir, Turkey. Chemosphere, 60(4), 552–556.

    Article  CAS  Google Scholar 

  • Anshumali, A. L. (2007). Seasonal variation in the major ion chemistry of Pandoh Lake, Mandi District, Himachal Pradesh, India. Applied Geochemistry, 22(8), 1736–1747.

    Article  CAS  Google Scholar 

  • Arain, M. B., Kazi, T. G., Jamali, M. K., Jalbani, N., Afridi, H. I., & Shah, A. (2008). Total dissolved and bioavailable elements in water and sediment samples and their accumulation in Oreochromis mossambicus of polluted Manchar Lake. Chemosphere, 70(10), 1845–1856.

    Article  CAS  Google Scholar 

  • Arhonditsis, G., Tsirtsis, G., Angelidis, M. O., & Karydis, M. (2000). Quantification of the effects of nonpoint nutrient sources to coastal marine eutrophication: Applications to a semi-enclosed gulf in the Mediterranean Sea. Ecological Modelling, 129(2–3), 209–227.

    Article  CAS  Google Scholar 

  • Atkinson, C. A., Jolley, D. F., & Simpson, S. L. (2007). Effect of overlying water pH, dissolved oxygen, salinity and sediment disturbances on metal release and sequestration from metal contaminated marine sediments. Chemosphere, 69(9), 1428–1437.

    Article  CAS  Google Scholar 

  • Audry, S., Schäfer, J., Blanc, G., & Jouanneau, J. M. (2004). Fifty-year sedimentary record of heavy metal pollution (Cd, Zn, Cu, Pb) in the Lot River reservoirs (France). Environmental Pollution, 132(3), 413–426.

    Article  CAS  Google Scholar 

  • Avila-Pérez, P., Balcázar, M., Zarazúa-Ortega, G., Barceló-Quintal, I., & Dıaz-Delgado, C. (1999). Heavy metal concentrations in water and bottom sediments of a Mexican reservoir. Science of the Total Environment, 234(1–3), 185–196.

    Article  Google Scholar 

  • Bai, J., Cui, B., Chen, B., Zhang, K., Deng, W., Gao, H., et al. (2011). Spatial distribution and ecological risk assessment of heavy metals in surface sediments from a typical plateau lake wetland, China. Ecological Modelling, 222(2), 301–306.

    Article  CAS  Google Scholar 

  • Bhuiyan, M. A., Parvez, L., Islam, M. A., Dampare, S. B., & Suzuki, S. (2010). Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh. Journal of Hazardous Materials, 173(1–3), 384–392.

    Article  CAS  Google Scholar 

  • Chadha, D. K. (1999). A proposed new diagram for geochemical classification of natural waters and interpretation of chemical data. Hydrogeology Journal, 7(5), 431–439.

    Article  Google Scholar 

  • Chae, J. S., Choi, M. S., Song, Y. H., Um, I. K., & Kim, J. G. (2014). Source identification of heavy metal contamination using metal association and Pb isotopes in Ulsan Bay sediments, East Sea, Korea. Marine Pollution Bulletin, 88(1–2), 373–382.

    Article  CAS  Google Scholar 

  • Chae, G. T., Yun, S. T., Kim, K., & Mayer, B. (2006). Hydrogeochemistry of sodium-bicarbonate type bedrock groundwater in the Pocheon spa area, South Korea: Water–rock interaction and hydrologic mixing. Journal of Hydrology, 321(1–4), 326–343.

    Article  CAS  Google Scholar 

  • Chapman, E. C., Capo, R. C., Stewart, B. W., Kirby, C. S., Hammack, R. W., Schroeder, K. T., et al. (2012). Geochemical and strontium isotope characterization of produced waters from Marcellus Shale natural gas extraction. Environmental Science and Technology, 46(6), 3545–3553.

    Article  CAS  Google Scholar 

  • Chen, J., Tang, C., & Yu, J. (2006). Use of 18O, 2H and 15N to identify nitrate contamination of groundwater in a wastewater irrigated field near the city of Shijiazhuang, China. Journal of Hydrology, 326(1–4), 367–378.

    Article  CAS  Google Scholar 

  • Cheng, H., Li, M., Zhao, C., Yang, K., Li, K., Peng, M., et al. (2015). Concentrations of toxic metals and ecological risk assessment for sediments of major freshwater lakes in China. Journal of Geochemical Exploration, 157, 15–26.

    Article  CAS  Google Scholar 

  • Chetelat, B., Liu, C. Q., Zhao, Z. Q., Wang, Q. L., Li, S. L., Li, J., et al. (2008). Geochemistry of the dissolved load of the Changjiang Basin rivers: Anthropogenic impacts and chemical weathering. Geochimica et Cosmochimica Acta, 72(17), 4254–4277.

    Article  CAS  Google Scholar 

  • Cheung, K. C., Poon, B. H. T., Lan, C. Y., & Wong, M. H. (2003). Assessment of metal and nutrient concentrations in river water and sediment collected from the cities in the Pearl River Delta, South China. Chemosphere, 52(9), 1431–1440.

    Article  CAS  Google Scholar 

  • Cirelli, A. F., & Miretzky, P. (2004). Ionic relations: A tool for studying hydrogeochemical processes in Pampean shallow lakes (Buenos Aires, Argentina). Quaternary International, 114(1), 113–121.

    Article  Google Scholar 

  • Cuculić, V., Cukrov, N., Kwokal, Ž., Strmečki, S., & Plavšić, M. (2018). Assessing trace metal contamination and organic matter in the brackish lakes as the major source of potable water. Environmental Geochemistry and Health, 40(1), 489–503.

    Article  CAS  Google Scholar 

  • Dai, M., Wang, J., Zhang, M., & Chen, X. (2017). Impact of the Three Gorges Project operation on the water exchange between Dongting Lake and the Yangtze River. International Journal of Sediment Research, 32(4), 506–514.

    Article  Google Scholar 

  • Deka, J. P., Tayeng, G., Singh, S., Hoque, R. R., Prakash, A., & Kumar, M. (2015). Source and seasonal variation in the major ion chemistry of two eastern Himalayan high altitude lakes, India. Arabian Journal of Geosciences, 8(12), 10597–10610.

    Article  CAS  Google Scholar 

  • Devarajan, N., Laffite, A., Graham, N. D., Meijer, M., Prabakar, K., Mubedi, J. I., et al. (2015). Accumulation of clinically relevant antibiotic-resistance genes, bacterial load, and metals in freshwater lake sediments in Central Europe. Environmental Science and Technology, 49(11), 6528–6537.

    Article  CAS  Google Scholar 

  • Ding, S., Chen, M., Gong, M., Fan, X., Qin, B., Xu, H., et al. (2018). Internal phosphorus loading from sediments causes seasonal nitrogen limitation for harmful algal blooms. Science of the Total Environment, 625, 872–884.

    Article  CAS  Google Scholar 

  • Ding, S., Han, C., Wang, Y., Yao, L., Wang, Y., Xu, D., et al. (2015). In situ, high-resolution imaging of labile phosphorus in sediments of a large eutrophic lake. Water Research, 74, 100–109.

    Article  CAS  Google Scholar 

  • Drinan, T. J., Graham, C. T., O’Halloran, J., & Harrison, S. S. C. (2013). The impact of catchment conifer plantation forestry on the hydrochemistry of peatland lakes. Science of the Total Environment, 443, 608–620.

    Article  CAS  Google Scholar 

  • Drost, W., Matzke, M., & Backhaus, T. (2007). Heavy metal toxicity to Lemna minor: Studies on the time dependence of growth inhibition and the recovery after exposure. Chemosphere, 67(1), 36–43.

    Article  CAS  Google Scholar 

  • El Nemr, A., Khaled, A., & El Sikaily, A. (2006). Distribution and statistical analysis of leachable and total heavy metals in the sediments of the Suez Gulf. Environmental Monitoring and Assessment, 118(1–3), 89–112.

    Article  CAS  Google Scholar 

  • Elkady, A. A., Sweet, S. T., Wade, T. L., & Klein, A. G. (2015). Distribution and assessment of heavy metals in the aquatic environment of Lake Manzala, Egypt. Ecological Indicators, 58, 445–457.

    Article  CAS  Google Scholar 

  • Firmansyah, I., Spiller, M., De Ruijter, F. J., Carsjens, G. J., & Zeeman, G. (2017). Assessment of nitrogen and phosphorus flows in agricultural and urban systems in a small island under limited data availability. Science of the Total Environment, 574, 1521–1532.

    Article  CAS  Google Scholar 

  • Fones, G. R., Davison, W., & Hamilton-Taylor, J. (2004). The fine-scale remobilization of metals in the surface sediment of the North-East Atlantic. Continental Shelf Research, 24(13–14), 1485–1504.

    Article  Google Scholar 

  • Gaillardet, J., Dupré, B., Louvat, P., & Allegre, C. J. (1999). Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chemical Geology, 159(1–4), 3–30.

    Article  CAS  Google Scholar 

  • Ginger, L. J., Zimmer, K. D., Herwig, B. R., Hanson, M. A., Hobbs, W. O., Small, G. E., et al. (2017). Watershed versus within-lake drivers of nitrogen: Phosphorus dynamics in shallow lakes. Ecological Applications, 27(7), 2155–2169.

    Article  Google Scholar 

  • Guo, W., Huo, S., Xi, B., Zhang, J., & Wu, F. (2015). Heavy metal contamination in sediments from typical lakes in the five geographic regions of China: Distribution, bioavailability, and risk. Ecological Engineering, 81, 243–255.

    Article  Google Scholar 

  • Heathcote, A. J., Hobbs, J. M. R., Anderson, N. J., Frings, P., Engstrom, D. R., & Downing, J. A. (2015). Diatom floristic change and lake paleoproduction as evidence of recent eutrophication in shallow lakes of the midwestern USA. Journal of Paleolimnology, 53(1), 17–34.

    Article  Google Scholar 

  • Hou, D., He, J., Lü, C., Ren, L., Fan, Q., Wang, J., et al. (2013). Distribution characteristics and potential ecological risk assessment of heavy metals (Cu, Pb, Zn, Cd) in water and sediments from Lake Dalinouer, China. Ecotoxicology and Environmental Safety, 93, 135–144.

    Article  CAS  Google Scholar 

  • Huang, F., Xu, Y., Tan, Z., Wu, Z., Xu, H., Shen, L., et al. (2018). Assessment of pollutions and identification of sources of heavy metals in sediments from west coast of Shenzhen, China. Environmental Science and Pollution Research, 25(4), 3647–3656.

    Article  CAS  Google Scholar 

  • Hudspith, M., Reichelt-Brushett, A., & Harrison, P. L. (2017). Factors affecting the toxicity of trace metals to fertilization success in broadcast spawning marine invertebrates: A review. Aquatic Toxicology, 184, 1–13.

    Article  CAS  Google Scholar 

  • Hussain, M., Ahmed, S. M., & Abderrahman, W. (2008). Cluster analysis and quality assessment of logged water at an irrigation project, eastern Saudi Arabia. Journal of Environmental Management, 86(1), 297–307.

    Article  CAS  Google Scholar 

  • Karlsson, K., Viklander, M., Scholes, L., & Revitt, M. (2010). Heavy metal concentrations and toxicity in water and sediment from stormwater ponds and sedimentation tanks. Journal of Hazardous Materials, 178(1–3), 612–618.

    Article  CAS  Google Scholar 

  • Kazi, T. G., Arain, M. B., Jamali, M. K., Jalbani, N., Afridi, H. I., Sarfraz, R. A., et al. (2009). Assessment of water quality of polluted lake using multivariate statistical techniques: A case study. Ecotoxicology and Environmental Safety, 72(2), 301–309.

    Article  CAS  Google Scholar 

  • Lerman, A., Wu, L., & Mackenzie, F. T. (2007). CO2 and H2SO4 consumption in weathering and material transport to the ocean, and their role in the global carbon balance. Marine Chemistry, 106(1–2), 326–350.

    Article  CAS  Google Scholar 

  • Li, F., Huang, J., Zeng, G., Yuan, X., Li, X., Liang, J., et al. (2013). Spatial risk assessment and sources identification of heavy metals in surface sediments from the Dongting Lake, Middle China. Journal of Geochemical Exploration, 132, 75–83.

    Article  CAS  Google Scholar 

  • Li, S., Xu, Z., Wang, H., Wang, J., & Zhang, Q. (2009). Geochemistry of the upper Han River basin, China: 3: Anthropogenic inputs and chemical weathering to the dissolved load. Chemical Geology, 264(1–4), 89–95.

    Article  CAS  Google Scholar 

  • Li, S., & Zhang, Q. (2009). Geochemistry of the upper Han River basin, China: 2: Seasonal variations in major ion compositions and contribution of precipitation chemistry to the dissolved load. Journal of Hazardous Materials, 170(2–3), 605–611.

    Article  CAS  Google Scholar 

  • Liang, J., Liu, J., Yuan, X., Zeng, G., Lai, X., Li, X., et al. (2015). Spatial and temporal variation of heavy metal risk and source in sediments of Dongting Lake wetland, mid-south China. Journal of Environmental Science and Health, Part A, 50(1), 100–108.

    Article  CAS  Google Scholar 

  • Liu, W. X., Li, X. D., Shen, Z. G., Wang, D. C., Wai, O. W. H., & Li, Y. S. (2003). Multivariate statistical study of heavy metal enrichment in sediments of the Pearl River Estuary. Environmental Pollution, 121(3), 377–388.

    Article  CAS  Google Scholar 

  • Ma, X., Zuo, H., Liu, J., & Liu, Y. (2016). Distribution, risk assessment, and statistical source identification of heavy metals in aqueous system from three adjacent regions of the Yellow River. Environmental Science and Pollution Research, 23(9), 8963–8975.

    Article  CAS  Google Scholar 

  • Maanan, M. (2008). Heavy metal concentrations in marine molluscs from the Moroccan coastal region. Environmental Pollution, 153(1), 176–183.

    Article  CAS  Google Scholar 

  • Meffe, R., & de Bustamante, I. (2014). Emerging organic contaminants in surface water and groundwater: A first overview of the situation in Italy. Science of the Total Environment, 481, 280–295.

    Article  CAS  Google Scholar 

  • Mekonnen, M. M., & Hoekstra, A. Y. (2015). Global gray water footprint and water pollution levels related to anthropogenic nitrogen loads to fresh water. Environmental Science and Technology, 49(21), 12860–12868.

    Article  CAS  Google Scholar 

  • Micó, C., Recatalá, L., Peris, M., & Sánchez, J. (2006). Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere, 65(5), 863–872.

    Article  CAS  Google Scholar 

  • Miller, H., Croudace, I. W., Bull, J. M., Cotterill, C. J., Dix, J. K., & Taylor, R. N. (2014). A 500 year sediment lake record of anthropogenic and natural inputs to Windermere (English Lake District) using double-spike lead isotopes, radiochronology, and sediment microanalysis. Environmental Science and Technology, 48(13), 7254–7263.

    Article  CAS  Google Scholar 

  • Mishra, V. K., & Tripathi, B. D. (2008). Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. Bioresource Technology, 99(15), 7091–7097.

    Article  CAS  Google Scholar 

  • Mondal, N. C., Singh, V. P., Singh, V. S., & Saxena, V. K. (2010). Determining the interaction between groundwater and saline water through groundwater major ions chemistry. Journal of Hydrology, 388(1–2), 100–111.

    Article  CAS  Google Scholar 

  • Na, E. H., & Park, S. S. (2006). A hydrodynamic and water quality modeling study of spatial and temporal patterns of phytoplankton growth in a stratified lake with buoyant incoming flow. Ecological Modelling, 199(3), 298–314.

    Article  Google Scholar 

  • Nguyen, H. L., Leermakers, M., Elskens, M., De Ridder, F., Doan, T. H., & Baeyens, W. (2005). Correlations, partitioning and bioaccumulation of heavy metals between different compartments of Lake Balaton. Science of the Total Environment, 341(1–3), 211–226.

    Article  CAS  Google Scholar 

  • Ou, C., Li, J., Zhang, Z., Li, X., Yu, G., & Liao, X. (2012). Effects of the dispatch modes of the Three Gorges Reservoir on the water regimes in the Dongting Lake area in typical years. Journal of Geographical Sciences, 22(4), 594–608.

    Article  Google Scholar 

  • Papafilippaki, A. K., Kotti, M. E., & Stavroulakis, G. G. (2008). Seasonal variations in dissolved heavy metals in the Keritis River, Chania, Greece, Global nest. The International Journal, 10(3), 320–325.

    Google Scholar 

  • Papatheodorou, G., Demopoulou, G., & Lambrakis, N. (2006). A long-term study of temporal hydrochemical data in a shallow lake using multivariate statistical techniques. Ecological Modelling, 193(3–4), 759–776.

    Article  Google Scholar 

  • Pejman, A., Bidhendi, G. N., Ardestani, M., Saeedi, M., & Baghvand, A. (2015). A new index for assessing heavy metals contamination in sediments: A case study. Ecological Indicators, 58, 365–373.

    Article  CAS  Google Scholar 

  • Pokrovsky, O. S., Schott, J., & Dupré, B. (2006). Trace element fractionation and transport in boreal rivers and soil porewaters of permafrost-dominated basaltic terrain in Central Siberia. Geochimica et Cosmochimica Acta, 70(13), 3239–3260.

    Article  CAS  Google Scholar 

  • Rajeshkumar, S., Liu, Y., Zhang, X., Ravikumar, B., Bai, G., & Li, X. (2018). Studies on seasonal pollution of heavy metals in water, sediment, fish and oyster from the Meiliang Bay of Taihu Lake in China. Chemosphere, 191, 626–638.

    Article  CAS  Google Scholar 

  • Shinohara, R., Imai, A., Kohzu, A., Tomioka, N., Furusato, E., Satou, T., et al. (2016). Dynamics of particulate phosphorus in a shallow eutrophic lake. Science of the Total Environment, 563, 413–423.

    Article  CAS  Google Scholar 

  • Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17(5), 517–568.

    Article  CAS  Google Scholar 

  • Sun, G. X., Wang, X. J., & Hu, Q. H. (2011). Using stable lead isotopes to trace heavy metal contamination sources in sediments of Xiangjiang and Lishui Rivers in China. Environmental Pollution, 159(12), 3406–3410.

    Article  CAS  Google Scholar 

  • Suresh, G., Sutharsan, P., Ramasamy, V., & Venkatachalapathy, R. (2012). Assessment of spatial distribution and potential ecological risk of the heavy metals in relation to granulometric contents of Veeranam lake sediments, India. Ecotoxicology and Environmental Safety, 84, 117–124.

    Article  CAS  Google Scholar 

  • Tang, W., Shan, B., Zhang, H., & Mao, Z. (2010). Heavy metal sources and associated risk in response to agricultural intensification in the estuarine sediments of Chaohu Lake Valley, East China. Journal of Hazardous Materials, 176(1–3), 945–951.

    Article  CAS  Google Scholar 

  • Tao, Y., Yuan, Z., Wei, M., & Xiaona, H. (2012). Characterization of heavy metals in water and sediments in Taihu Lake, China. Environmental Monitoring and Assessment, 184(7), 4367–4382.

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency (USEPA). (1999). Screening level ecological risks assessment protocol for hazardous waste combustion facilities. Appendix E: Toxicity reference values. EPA 530-D99-001C, vol. 3. http://www.epa.gov/epaoswer/hazwaste/combust/eco-risk/voume3/appx-e.pdf.

  • Varol, M. (2013). Dissolved heavy metal concentrations of the Kralkızı, Dicle and Batman dam reservoirs in the Tigris River basin, Turkey. Chemosphere, 93(6), 954–962.

    Article  CAS  Google Scholar 

  • Wang, Q., Kim, D., Dionysiou, D. D., Sorial, G. A., & Timberlake, D. (2004). Sources and remediation for mercury contamination in aquatic systems—A literature review. Environmental Pollution, 131(2), 323–336.

    Article  CAS  Google Scholar 

  • Wang, L., Liang, T., Zhong, B., Li, K., Zhang, Q., & Zhang, C. (2014). Study on nitrogen dynamics at the sediment–water interface of Dongting Lake, China. Aquatic Geochemistry, 20(5), 501–517.

    Article  CAS  Google Scholar 

  • Wang, Y., Yang, L., Kong, L., Liu, E., Wang, L., & Zhu, J. (2015). Spatial distribution, ecological risk assessment and source identification for heavy metals in surface sediments from Dongping Lake, Shandong, East China. Catena, 125, 200–205.

    Article  CAS  Google Scholar 

  • Wang, Z. L., Zhang, J., & Liu, C. Q. (2007). Strontium isotopic compositions of dissolved and suspended loads from the main channel of the Yangtze River. Chemosphere, 69(7), 1081–1088.

    Article  CAS  Google Scholar 

  • Warnken, K. W., Gill, G. A., Griffin, L. L., & Santschi, P. H. (2001). Sediment-water exchange of Mn, Fe, Ni and Zn in Galveston Bay, Texas. Marine Chemistry, 73(3–4), 215–231.

    Article  CAS  Google Scholar 

  • World Health Organization (WHO). (2004). Guidelines for drinking-water quality: Recommendations (Vol. 1). Geneva: World Health Organization.

    Google Scholar 

  • Wu, X., Cobbina, S. J., Mao, G., Xu, H., Zhang, Z., & Yang, L. (2016). A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. Environmental Science and Pollution Research, 23(9), 8244–8259.

    Article  CAS  Google Scholar 

  • Xu, Z., & Liu, C. Q. (2007). Chemical weathering in the upper reaches of Xijiang River draining the Yunnan–Guizhou Plateau, Southwest China. Chemical Geology, 239(1–2), 83–95.

    Article  CAS  Google Scholar 

  • Yi, Y., Yang, Z., & Zhang, S. (2011). Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin. Environmental Pollution, 159(10), 2575–2585.

    Article  CAS  Google Scholar 

  • Yidana, S. M., Ophori, D., & Banoeng-Yakubo, B. (2008). A multivariate statistical analysis of surface water chemistry data—The Ankobra Basin, Ghana. Journal of Environmental Management, 86(1), 80–87.

    Article  CAS  Google Scholar 

  • Yin, G., Liu, L., & Yuan, C. (2015). Assessing environmental risks for high intensity agriculture using the material flow analysis method—A case study of the Dongting Lake basin in South Central China. Environmental Monitoring and Assessment, 187(7), 472.

    Article  Google Scholar 

  • Zabetoglou, K., Voutsa, D., & Samara, C. (2002). Toxicity and heavy metal contamination of surficial sediments from the Bay of Thessaloniki (Northwestern Aegean Sea) Greece. Chemosphere, 49(1), 17–26.

    Article  CAS  Google Scholar 

  • Zeng, X., Liu, Y., You, S., Zeng, G., Tan, X., Hu, X., et al. (2015). Spatial distribution, health risk assessment and statistical source identification of the trace elements in surface water from the Xiangjiang River, China. Environmental Science and Pollution Research, 22(12), 9400–9412.

    Article  CAS  Google Scholar 

  • Zhang, H., Jiang, Y., Ding, M., & Xie, Z. (2017). Level, source identification, and risk analysis of heavy metal in surface sediments from river-lake ecosystems in the Poyang Lake, China. Environmental Science and Pollution Research, 24(27), 21902–21916.

    Article  CAS  Google Scholar 

  • Zhang, L., Xue, M., Wang, M., Cai, W. J., Wang, L., & Yu, Z. (2014). The spatiotemporal distribution of dissolved inorganic and organic carbon in the main stem of the Changjiang (Yangtze) River and the effect of the Three Gorges Reservoir. Journal of Geophysical Research: Biogeosciences, 119(5), 741–757.

    CAS  Google Scholar 

Download references

Acknowledgements

This study was sponsored by the Cultivation, Construction and Service Project of the Institute of Geographical Sciences and Natural Resources Research (IGSNRR), Chinese Academy of Sciences (TSYJS-01) and the National Key Project for Basic Research (No. 2012CB417004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingqing Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Wang, L., Liang, T. et al. Major ion and dissolved heavy metal geochemistry, distribution, and relationship in the overlying water of Dongting Lake, China. Environ Geochem Health 41, 1091–1104 (2019). https://doi.org/10.1007/s10653-018-0204-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-018-0204-y

Keywords

Navigation