Skip to main content
Log in

Seasonal and spatial contamination statuses and ecological risk of sediment cores highly contaminated by heavy metals and metalloids in the Xiangjiang River

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

To reveal seasonal and spatial variations of heavy metals and metalloids (HMMs) in sediment of the Xiangjiang River, a total of 24 water and 649 sediment samples were collected from six sampling stations in the Songbai section of the river which had been polluted by HMMs for 100 years. Their contamination statuses and ecological risk were determined by enrichment factor (EF), geo-accumulation index (Igeo), pollution load index (PLI), and mean probable effect concentration quotients (mPECQs) analyses. The results revealed a unique seasonal distribution of metals in the sampling stations: The highest concentrations were revealed in the dry seasons (autumn and winter) and the lowest during the wet seasons (spring and summer). It exhibited a greater seasonal variation in the estuary sediment cores (sites ME and MW) than in the cores of other sites. Moreover, the highest concentrations of the tested metals were also found in the estuary sediment cores in the dry seasons (autumn and winter). The highest vertical concentrations of Pb, Zn, Cu, Ni, As, Fe, and Mn were observed at the depths of 16–36 cm in all of the sampled sediment cores. The EF, Igeo, PLI, and mPECQs values of all samples in autumn were higher than in summer. Cd posed the highest ecological risk in all seasons, although its concentrations were lower compared to other studied elements. Our results will benefit to develop feasible sediment quality guidelines for government monitor and remediate the local sediments in the Xiangjiang River.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Antunes, I., Albuquerque, M. T. D., & Roque, N. (2018). Spatial environmental risk evaluation of potential toxic elements in stream sediments. Environmental Geochemistry and Health, 40(6), 2573–2585.

    Article  CAS  Google Scholar 

  • Balistrieri, L. S., Seal, R. R., Piatak, N. M., & Paul, B. (2007). Assessing the concentration, speciation, and toxicity of dissolved metals during mixing of acid-mine drainage and ambient river water downstream of the Elizabeth Copper Mine, Vermont, USA. Applied Geochemistry, 22(5), 930–952.

    Article  CAS  Google Scholar 

  • Belabed, B.-E., Meddour, A., Samraoui, B., & Chenchouni, H. (2017). Modeling seasonal and spatial contamination of surface waters and upper sediments with trace metal elements across industrialized urban areas of the Seybouse watershed in North Africa. Environmental Monitoring and Assessment, 189(6), 265.

    Article  CAS  Google Scholar 

  • Bi, N. S., Yang, Z. S., Wang, H. J., Xu, C. L., & Guo, Z. G. (2014). Impact of artificial water and sediment discharge regulation in the Huanghe (Yellow River) on the transport of particulate heavy metals to the sea. CATENA, 121, 232–240.

    Article  CAS  Google Scholar 

  • Bian, B., Zhou, Y., & Fang, B. B. (2016). Distribution of heavy metals and benthic macroinvertebrates: Impacts from typical inflow river sediments in the Taihu Basin, China. Ecological Indicators, 69, 348–359.

    Article  CAS  Google Scholar 

  • Birch, G. F., Melwani, A., Lee, J. H., & Apostolatos, C. (2014). The discrepancy in concentration of metals (Cu, Pb and Zn) in oyster tissue (Saccostrea glomerata) and ambient bottom sediment (Sydney estuary, Australia). Marine Pollution Bulletin, 80(1–2), 263–274.

    Article  CAS  Google Scholar 

  • Ca Ador, I., Vale, C., & Catarino, F. (2000). Seasonal variation of Zn, Pb, Cu and Cd concentrations in the root–sediment system of Spartina maritima and Halimione portulacoides from Tagus estuary salt marshes. Marine Environmental Research, 49(3), 279–290.

    Article  Google Scholar 

  • Chai, L. Y., Ding, C. L., Tang, C. J., Yang, W. C., Yang, Z. H., Wang, Y. Y., et al. (2018a). Discerning three novel chromate reduce and transport genes of highly efficient Pannonibacter phragmitetus BB: From genome to gene and protein. Ecotoxicology and Environmental Safety, 162, 139–146.

    Article  CAS  Google Scholar 

  • Chai, L. Y., Li, H., Yang, Z. H., Min, X. B., Liao, Q., Liu, Y., et al. (2017). Heavy metals and metalloids in the surface sediments of the Xiangjiang River, Hunan, China: distribution, contamination, and ecological risk assessment. Environmental Science and Pollution Research, 24(1), 1–12.

    Article  CAS  Google Scholar 

  • Chai, L. Y., Wang, X., Wang, H. Y., Yang, W. C., Liao, Q., & Wu, Y. J. (2018b). Formation of one-dimensional composites of poly(m-phenylenediamine)s based on Streptomyces for adsorption of hexavalent chromium. International Journal of Environmental Science and Technology, 15(7), 1411–1422.

    Article  CAS  Google Scholar 

  • Chai, L. Y., Wang, Z. X., Wang, Y. Y., Yang, Z. H., Wang, H. Y., & Wu, X. (2010). Ingestion risks of metals in groundwater based on TIN model and dose-response assessment—A case study in the Xiangjiang watershed, central-south China. Science of the Total Environment, 408(16), 3118–3124.

    Article  CAS  Google Scholar 

  • Chen, C. F., Ju, Y. R., Chen, C. W., & Dong, C. D. (2016). Vertical profile, contamination assessment, and source apportionment of heavy metals in sediment cores of Kaohsiung Harbor, Taiwan. Chemosphere, 165, 67–79.

    Article  CAS  Google Scholar 

  • Dai, S. B., Yang, S. L., Zhu, J., Gao, A., & Li, P. (2005). The role of Lake Dongting in regulating the sediment budget of the Yangtze River. Hydrology and Earth System Sciences, 9(6), 692–698.

    Article  Google Scholar 

  • Duivenvoorden, L. J., Roberts, D. T., & Tucker, G. M. (2017). Serpentine geology links to water quality and heavy metals in sediments of a stream system in central Queensland, Australia. Environmental Earth Sciences, 76(8), 320.

    Article  CAS  Google Scholar 

  • Duman, F., Aksoy, A., & Demirezen, D. (2007). Seasonal variability of heavy metals in surface sediment of Lake Sapanca, Turkey. Environmental Monitoring and Assessment, 133(1–3), 277–283.

    Article  CAS  Google Scholar 

  • ElBishlawi, H., Shin, J. Y., & Jaffe, P. R. (2013). Trace metal dynamics in the sediments of a constructed and natural urban tidal marsh: The role of iron, sulfide, and organic complexation. Ecological Engineering, 58, 133–141.

    Article  Google Scholar 

  • Elzwayie, A., Afan, H. A., Allawi, M. F., & El-Shafie, A. (2017). Heavy metal monitoring, analysis and prediction in lakes and rivers: State of the art. Environmental Science and Pollution Research, 24(13), 12104–12117.

    Article  Google Scholar 

  • Farkas, A., Erratico, C., & Viganò, L. (2007). Assessment of the environmental significance of heavy metal pollution in surficial sediments of the River Po. Chemosphere, 68(4), 761–768.

    Article  CAS  Google Scholar 

  • Fernandes, L. L., & Nayak, G. N. (2014). Characterizing metal levels and their speciation in intertidal sediments along Mumbai coast, India. Marine Pollution Bulletin, 79(1–2), 371–378.

    Article  CAS  Google Scholar 

  • Haris, H., Looi, L. J., Aris, A. Z., Mokhtar, N. F., Ayob, N. A. A., Yusoff, F. M., et al. (2017). Geo-accumulation index and contamination factors of heavy metals (Zn and Pb) in urban river sediment. Environmental Geochemistry and Health, 39(6), 1259–1271.

    Article  CAS  Google Scholar 

  • He, M. Y., Zheng, H. B., Bookhagen, B., & Clift, P. D. (2014). Controls on erosion intensity in the Yangtze River basin tracked by U–Pb detrital zircon dating. Earth-Science Reviews, 136, 121–140.

    Article  CAS  Google Scholar 

  • Himmelheber, D. W., Taillefert, M., Pennell, K. D., & Hughes, J. B. (2008). Spatial and temporal evolution of biogeochemical processes following in situ capping of contaminated sediments. Environmental Science and Technology, 42(11), 4113–4120.

    Article  CAS  Google Scholar 

  • Hou, D. K., He, J., Lü, C. W., Ren, L. M., Fan, Q. Y., Wang, J. H., et al. (2013). Distribution characteristics and potential ecological risk assessment of heavy metals (Cu, Pb, Zn, Cd) in water and sediments from Lake Dalinouer, China. Ecotoxicology & Environmental Safety, 93(4), 135–144.

    Article  CAS  Google Scholar 

  • Jamshidi-Zanjani, A., & Saeedi, M. (2017). Multivariate analysis and geochemical approach for assessment of metal pollution state in sediment cores. Environmental Science and Pollution Research, 24(19), 16289–16304.

    Article  CAS  Google Scholar 

  • Kowalska, J. B., Mazurek, R., Gasiorek, M., & Zaleski, T. (2018). Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination—A review. Environmental Geochemistry and Health, 40(6), 2395–2420.

    Article  CAS  Google Scholar 

  • Li, H., Yang, J. Q., Ye, B., & Jiang, D. Y. (2018). Pollution characteristics and ecological risk assessment of 11 unheeded metals in sediments of the Chinese Xiangjiang River. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-018-0230-9.

    Article  Google Scholar 

  • Liao, J. B., Chen, J., Ru, X., Chen, J. D., Wu, H. Z., & Wei, C. H. (2016). Heavy metals in river surface sediments affected with multiple pollution sources, South China: Distribution, enrichment and source apportionment. Journal of Geochemical Exploration, 176, 9–19.

    Article  CAS  Google Scholar 

  • Liu, H., Zhang, K. J., Chai, L. Y., Yang, Z. H., Yang, W. C., Liao, Q., et al. (2017). A comparative evaluation of different sediment quality guidelines for metal and metalloid pollution in the Xiangjiang River, Hunan, China. Archives of Environmental Contamination and Toxicology, 73, 593–606.

    Article  CAS  Google Scholar 

  • Lu, J. M., Yuan, F. Q., Zhang, F. Y., & Zhao, Q. (2016). The study on heavy metal distribution in the sediment of middle tidal flat in Yangtze Estuary, China. Environmental Earth Sciences, 75(7), 1–12.

    Google Scholar 

  • Ma, X. L., Zuo, H., Tian, M. J., Zhang, L. Y., Meng, J., Zhou, X. N., et al. (2016). Assessment of heavy metals contamination in sediments from three adjacent regions of the Yellow River using metal chemical fractions and multivariate analysis techniques. Chemosphere, 144, 264–272.

    Article  CAS  Google Scholar 

  • MacDonald, D. D., Ingersoll, C. G., & Berger, T. A. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology, 39(1), 20–31.

    Article  CAS  Google Scholar 

  • Mao, L. J., Mo, D. W., Guo, Y. Y., Fu, Q., Yang, J. H., & Jia, Y. F. (2013). Multivariate analysis of heavy metals in surface sediments from lower reaches of the Xiangjiang River, southern China. Environmental Earth Sciences, 69(3), 765–771.

    Article  CAS  Google Scholar 

  • Min, X. B., Wang, Y. Y., Chai, L. Y., Yang, Z. H., & Liao, Q. (2017). High-resolution analyses reveal structural diversity patterns of microbial communities in chromite ore processing residue (COPR) contaminated soils. Chemosphere, 183, 266–276.

    Article  CAS  Google Scholar 

  • Mna, H. B., Oueslati, W., Helali, M. A., Zaaboub, N., Added, A., & Aleya, L. (2017). Distribution and assessment of heavy metal toxicity in sediment cores from Bizerte Lagoon, Tunisia. Environmental Monitoring and Assessment, 189(7), 356.

    Article  CAS  Google Scholar 

  • Monteiro, C. E., Cesário, R., O’Driscoll, N. J., Nogueira, M., Válega, M., Caetano, M., et al. (2016). Seasonal variation of methylmercury in sediment cores from the Tagus Estuary (Portugal). Marine Pollution Bulletin, 104(1–2), 162–170.

    Article  CAS  Google Scholar 

  • Muller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. GeoJournal, 2(108), 108–118.

    Google Scholar 

  • Najamuddin, P. T. S. H. (2016). Seasonal distribution and geochemical fractionation of heavymetals from surface sediment in a tropical estuary of Jeneberang River, Indonesia. Marine Pollution Bulletin, 1–2(111), 456–462.

    Article  CAS  Google Scholar 

  • Ni, L. X., Li, D. D., Su, L. L., Xu, J. J., Li, S. Y., Ye, X., et al. (2016). Effects of algae growth on cadmium remobilization and ecological risk in sediments of Taihu Lake. Chemosphere, 151, 37–44.

    Article  CAS  Google Scholar 

  • Pal, D., & Maiti, S. K. (2018). Heavy metal speciation, leaching and toxicity status of a tropical rain-fed river Damodar, India. Environmental Geochemistry and Health, 40(6), 2303–2324.

    Article  CAS  Google Scholar 

  • Pandey, L. K., Park, J., Son, D. H., Kim, W., Islam, M. S., Choi, S., et al. (2019). Assessment of metal contamination in water and sediments from major rivers in South Korea from 2008 to 2015. Science of the Total Environment, 651, 323–333.

    Article  CAS  Google Scholar 

  • Patel, P., Raju, N. J., Reddy, B., Suresh, U., Sankar, D. B., & Reddy, T. V. K. (2018). Heavy metal contamination in river water and sediments of the Swarnamukhi River Basin, India: Risk assessment and environmental implications. Environmental Geochemistry and Health, 40(2), 609–623.

    Article  CAS  Google Scholar 

  • Qi, J. Y., Zhang, H. L., Li, X. P., Lu, J., & Zhang, G. S. (2016). Concentrations, spatial distribution, and risk assessment of soil heavy metals in a Zn–Pb mine district in southern China. Environmental Monitoring and Assessment, 188(7), 413.

    Article  CAS  Google Scholar 

  • Qiu, G. L., & Chen, H. L. (2016). Concentration and pollution assessment of heavy metals in sediments of the Xiangjiang River (Hengyang section), China. Environment and Sustainable Development, 41(3), 207–210.

    Google Scholar 

  • Ranjbar Jafarabadi, A., Riyahi Bakhtiyari, A., Shadmehri Toosi, A., & Jadot, C. (2017). Spatial distribution, ecological and health risk assessment of heavy metals in marine surface sediments and coastal seawaters of fringing coral reefs of the Persian Gulf, Iran. Chemosphere, 185, 1090–1111.

    Article  CAS  Google Scholar 

  • Redwan, M., & Elhaddad, E. (2017). Heavy metals seasonal variability and distribution in Lake Qaroun sediments, El-Fayoum, Egypt. Journal of African Earth Sciences, 134, 48–55.

    Article  CAS  Google Scholar 

  • Rodriguez-Freire, L., Avasarala, S., Ali, A.-M. S., Agnew, D., Hoover, J. H., Artyushkova, K., et al. (2016). Post gold king mine spill investigation of metal stability in water and sediments of the animas river watershed. Environmental Science and Technology, 50(21), 11539–11548.

    Article  CAS  Google Scholar 

  • Sakan, S., Devic, G., Relic, D., Andelkovic, I., Sakan, N., & Dordevic, D. (2015). Evaluation of sediment contamination with heavy metals: The importance of determining appropriate background content and suitable element for normalization. Environmental Geochemistry and Health, 37(1), 97–113.

    Article  CAS  Google Scholar 

  • Sakan, S., Popovic, A., Andelkovic, I., & Dordevic, D. (2016). Aquatic sediments pollution estimate using the metal fractionation, secondary phase enrichment factor calculation, and used statistical methods. Environmental Geochemistry and Health, 38(3), 855–867.

    Article  CAS  Google Scholar 

  • Shikazono, N., Tatewaki, K., Mohiuddin, K. M., Nakano, T., & Zakir, H. M. (2012). Sources, spatial variation, and speciation of heavy metals in sediments of the Tamagawa River in Central Japan. Environmental Geochemistry and Health, 34, 13–26.

    Article  CAS  Google Scholar 

  • Song, Y. X., Chai, L. Y., Tang, C. J., Xiao, R. Y., Li, B. R., Wu, D., et al. (2018). Influence of ZnO nanoparticles on anammox granules: The inhibition kinetics and mechanism analysis by batch assays. Biochemical Engineering Journal, 133, 122–129.

    Article  CAS  Google Scholar 

  • Sun, W. L., Sang, L. X., & Jiang, B. F. (2012). Trace metals in sediments and aquatic plants from the Xiangjiang River, China. Journal of Soils and Sediments, 12(10), 1649–1657.

    Article  CAS  Google Scholar 

  • Tamim, U., Khan, R., Jolly, Y. N., Fatema, K., Das, S., Naher, K., et al. (2016). Elemental distribution of metals in urban river sediments near an industrial effluent source. Chemosphere, 155, 509–518.

    Article  CAS  Google Scholar 

  • Tomlinson, D. L., Wilson, J. G., Harris, C. R., & Jeffrey, D. W. (1980). Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresuntersuchungen, 1–4(33), 566–575.

    Article  Google Scholar 

  • Wang, H. J., Wang, A. M., Bi, N. S., Zeng, X. M., & Xiao, H. H. (2014). Seasonal distribution of suspended sediment in the Bohai Sea, China. Continental Shelf Research, 90, 17–32.

    Article  Google Scholar 

  • Wang, J., Liu, G. J., Lu, L. L., Zhang, J. M., & Liu, H. Q. (2015). Geochemical normalization and assessment of heavy metals (Cu, Pb, Zn, and Ni) in sediments from the Huaihe River, Anhui, China. CATENA, 129, 30–38.

    Article  CAS  Google Scholar 

  • Wang, Z. X., Chai, L. Y., Wang, Y. Y., Yang, Z. H., Wang, H. Y., & Wu, X. (2011). Potential health risk of arsenic and cadmium in groundwater near Xiangjiang River, China: A case study for risk assessment and management of toxic substances. Environmental Monitoring and Assessment, 175(1), 167–173.

    Article  CAS  Google Scholar 

  • Wang, Z. X., Chai, L. Y., Yang, Z. H., Wang, Y. Y., & Wang, H. Y. (2010). Identifying sources and assessing potential risk of heavy metals in soils from direct exposure to children in a mine-impacted city, Changsha, China. Journal of Environmental Quality, 39(5), 1616–1623.

    Article  CAS  Google Scholar 

  • Wu, C., Zou, Q., Xue, S. G., Mo, J. Y., Pan, W. S., Lou, L. Q., et al. (2015). Effects of silicon (Si) on arsenic (As) accumulation and speciation in rice (Oryza sativa L.) genotypes with different radial oxygen loss (ROL). Chemosphere, 138, 447–453.

    Article  CAS  Google Scholar 

  • Yang, Z. F., Wang, Y., Shen, Z. Y., Niu, J. F., & Tang, Z. W. (2009). Distribution and speciation of heavy metals in sediments from the mainstream, tributaries, and lakes of the Yangtze River catchment of Wuhan, China. Journal of Hazardous Materials, 166(2–3), 1186–1194.

    Article  CAS  Google Scholar 

  • Yang, Z. H., Liang, L. F., Yang, W. C., Shi, W., Tong, Y. P., Chai, L. Y., et al. (2018a). Simultaneous immobilization of cadmium and lead in contaminated soils by hybrid bio-nanocomposites of fungal hyphae and nano-hydroxyapatites. Environmental Science and Pollution Research, 25(12), 11970–11980.

    Article  CAS  Google Scholar 

  • Yang, Z. H., Shi, W., Yang, W. C., Liang, L. F., Yao, W. B., Chai, L. Y., et al. (2018b). Combination of bioleaching by gross bacterial biosurfactants and flocculation: A potential remediation for the heavy metal contaminated soils. Chemosphere, 206, 83–91.

    Article  CAS  Google Scholar 

  • Zhang, W., Yu, L., & Hutchinson, S. M. (2001). Diagenesis of magnetic minerals in the intertidal sediments of the Yangtze Estuary, China, and its environmental significance. Science of the Total Environment, 266(1–3), 169–175.

    Article  CAS  Google Scholar 

  • Zhu, J. Y., Zhang, J. X., Qian, L., Tao, H., Xie, J. P., Hu, Y. H., et al. (2013). Phylogenetic analysis of bacterial community composition in sediment contaminated with multiple heavy metals from the Xiangjiang River in China. Marine Pollution Bulletin, 70(1–2), 134–139.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R&D Plan (2016YFC0403003), key project of National Natural Science Foundation of China (51634010), Key Scientific Research Project of Hunan Province, China, (2016SK2004), and Environmental Protection Department of Hunan [(2017)83] for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Liao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Chai, L., Yang, Z. et al. Seasonal and spatial contamination statuses and ecological risk of sediment cores highly contaminated by heavy metals and metalloids in the Xiangjiang River. Environ Geochem Health 41, 1617–1633 (2019). https://doi.org/10.1007/s10653-019-00245-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-019-00245-2

Keywords

Navigation