Skip to main content
Log in

Towards a circular metal additive manufacturing through recycling of materials: A mini review

小综述: 通过材料回收实现金属增材制造的循环利用

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Additive manufacturing is a new emerging technology which is ideal for low-to-zero waste production, and it is considered to be a green and clean process that has the potential to lower the cost and energy consumption of production. However, the cost of the feedstock for additive manufacturing and the additive manufactured parts is usually very high, which hinders the further application of additive manufacturing, especially for the metal additive manufacturing. The concept of circular metal additive manufacturing involves the recycling of the metal feedstock and the additive manufactured parts leading to the truly zero waste production and the most energy saving. This paper reviews the technologies that help the formation of a circular metal additive manufacturing through recycling of the feedstocks and the damaged metal parts. Reactive metals, such as titanium, tend to be contaminated easily during handling and production. Recycling of the titanium for achieving a circular titanium additive manufacturing is reviewed in detail.

摘要

增材制造是一种新兴的废物排放接近于零的生产技术, 它被公认为是一种绿色清洁的生产工艺, 具有降低生产成本和能耗的潜力. 但是增材制造的原料成本和增材制造的零部件成本通常比较高, 严 重阻碍了增材制造, 尤其是金属增材制造的进一步工业应用. 循环金属增材制造的概念涉及到金属原 料和零部件的回收利用, 从而实现真正的零废物产生和最大程度的能量节省. 本文综述了通过循环利 用增材制造过程中的金属原料和金属零件形成循环的金属增材制造技术. 活性金属, 例如钛, 在粉末 处理和生产过程中很容易被污染, 本文详细介绍了钛材增材制造过程中金属钛的综合利用.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DICKSON S. Creating tactile captions in three-dimensional computer-aided design and manufacturing [J]. Rapid Prototyping Journal, 2005, 11(5): 293–297. DOI: https://doi.org/10.1108/1355254051062360.

    Article  Google Scholar 

  2. GIBSON I, ROSEN D W, STUCKER B. Additive manufacturing technologies [M]. Springer, 2014.

  3. WILLIAM E F. Metal additive manufacturing: a review [J]. Journal of Materials Engineering and Performance, 2014, 23(6): 1917–1928. DOI: https://doi.org/10.1007/s11665-014-0958-z.

    Article  Google Scholar 

  4. ZAPUSKALOV N. Comparison of continuous strip casting with conventional technology [J]. ISIJ International, 2003, 43(8): 1115–1127. DOI: https://doi.org/10.2355/isijinternational.43.1115.

    Article  Google Scholar 

  5. HAN X, HUA L. Technology, comparison between cold rotary forging and conventional forging [J]. Journal of Mechanical Science and Technology, 2009, 23(10): 2668. DOI: https://doi.org/10.1007/s12206-009-0624-9.

    Article  Google Scholar 

  6. EHMANN K F, KAPOOR S G, DEVOR R E, LAZOGLU I. Machining process modeling: A review [J]. Journal of Manufacturing Science and Engineering, 1997, 119(4B): 655–663. DOI: https://doi.org/10.1115/1.2836805.

    Article  Google Scholar 

  7. SAMES W J, LIST F, PANNALA S, DEHOFF R R, BABU S S. The metallurgy and processing science of metal additive manufacturing [J]. International Materials Reviews, 2016, 61(5): 315–360. DOI: https://doi.org/10.1080/09506608.2015.1116649.

    Article  Google Scholar 

  8. DEBROY T, WEI H L, ZUBACK J S, MUKHERJEE T, ELMER J W, MILEWSKI J O, BEESE A M, WILSONHEID A, DE A, ZHANG W. Additive manufacturing of metallic components–Process, structure and properties [J]. Progress in Materials Science, 2018, 92: 112–224. DOI: https://doi.org/10.1016/j.pmatsci.2017.10.001.

    Article  Google Scholar 

  9. YADROITSEV I, BERTRAND P H, SMUROV I. Parametric analysis of the selective laser melting process [J]. Applied Surface Science, 2007, 253(19): 8064–8069. DOI: https://doi.org/10.1016/j.apsusc.2007.02.088.

    Article  Google Scholar 

  10. LI X, WANG C T, ZHANG W G, LI Y C. Fabrication and characterization of porous Ti6Al4V parts for biomedical applications using electron beam melting process [J]. Materials Letters, 2009, 63(3, 4): 403–405. DOI: https://doi.org/10.1016/j.matlet.2008.10.065.

    Article  Google Scholar 

  11. COSTA L, VILAR R. Laser powder deposition [J]. Rapid Prototyping Journal, 2009, 15(4): 264–279. DOI: https://doi.org/10.1108/13552540910979785/full/html.

    Article  Google Scholar 

  12. GAYTAN S M, CADENA M A, KARIM H, DELFIN D, LIN Y, ESPALIN D, MACDONALD E, WICKER R B. Fabrication of barium titanate by binder jetting additive manufacturing technology [J]. Ceramics International, 2015, 41(5): 6610–6619. DOI: https://doi.org/10.1016/j.ceramint.2015.01.108.

    Article  Google Scholar 

  13. METEYER S, XU X, PERRY N, ZHAO Y F. Energy and material flow analysis of binder-jetting additive manufacturing processes [J]. Procedia CIRP, 2014, 15: 19–25. DOI: https://doi.org/10.1016/j.procir.2014.06.030.

    Article  Google Scholar 

  14. THOMPSON M K, MORONI G, VANEKER T, FADEL G, CAMPBELL R I, GIBSON I, BERNARD A, SCHULZ J, GRAF P, AHUJA B, FILOMENO M. Design for additive manufacturing: Trends, opportunities, considerations, and constraints [J]. CIRP Annals, 2016, 65(2): 737–760. DOI: https://doi.org/10.1016/j.cirp.2016.05.004.

    Article  Google Scholar 

  15. THOMAS D S, GILBERT S W. Costs and cost effectiveness of additive manufacturing — A literature review and discussion [M]. NIST Special Publication 1176, 2014. DOI: https://doi.org/10.6028/NIST.SP.1176.

  16. SAUERWEIN M, DOUBROVSKI E, BALKENENDE R, BAKKER C. Exploring the potential of additive manufacturing for product design in a circular economy [J]. Journal of Cleaner Production, 2019, 226: 1138–1149. DOI: https://doi.org/10.1016/j.jclepro.2019.04.108.

    Article  Google Scholar 

  17. BOCKEN N M P, de PAUW I, BAKKER C, van der GRINTEN B. Product design and business model strategies for a circular economy [J]. Journal of Industrial and Production Engineering, 2016, 33(5): 308–320. DOI: https://doi.org/10.1080/21681015.2016.1172124.

    Article  Google Scholar 

  18. LU H Z, LI J, GUO J, XU Z. Movement behavior in electrostatic separation: Recycling of metal materials from waste printed circuit board [J]. Journal of Materials Processing Technology, 2008, 197(1–3): 101–108. DOI: https://doi.org/10.1016/j.jmatprotec.2007.06.004.

    Article  Google Scholar 

  19. SREENIVASAN J, GOVINDAN M, CHINNASAMI M, KADIRESU I. Solid waste management in malaysia–A move towards sustainability [M]// Waste Management—An Integrated Vision. 2012. DOI: https://doi.org/10.5772/50870.

  20. LAZAREVIC D, BUCLET N, BRANDT N. The influence of the waste hierarchy in shaping European waste management: The case of plastic waste [J]. Regional Development Dialogue, 2010, 31(2): 124–148. DOI: urn:nbn:se:kth:diva-72948.

    Google Scholar 

  21. CHOWDHURY A H, MOHAMMAD N, HAQUE M R U, HOSSAIN T. Developing 3Rs (reduce, reuse and recycle) strategy for waste management in the urban areas of Bangladesh: Socioeconomic and climate adoption mitigation option [J]. IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT), 2014, 8(5): 9–18. DOI: https://doi.org/10.9790/2402-08510918.

    Article  Google Scholar 

  22. STRONDL A, LYCKFELDT O, BRODIN H, ACKELID U. Characterization and control of powder properties for additive manufacturing [J]. JOM, 2015, 67(3): 549–554.

    Article  Google Scholar 

  23. CLAYTON J. Optimising metal powders for additive manufacturing [J]. Metal Powder Report, 2014, 69(5): 14–17. DOI: https://doi.org/10.1016/s0026-0657(14)70223-1.

    Article  Google Scholar 

  24. VERT R, PONTONE R, DOLBEC R, DIONNE L, BOULOS M. Induction plasma technology applied to powder manufacturing: Example of titanium-based materials [J]. Key Engineering Materials, 2016, 704: 282–286. DOI: https://doi.org/10.4028/www.scientific.net/KEM.704.282.

    Article  Google Scholar 

  25. RENDEROS M, GIROT F, LAMIKIZ A, TORREGARAY A, SAINTIER N. Ni based powder reconditioning and reuse for LMD process [J]. Physics Procedia, 2016, 83: 769–777. DOI: https://doi.org/10.1016/j.phpro.2016.08.079.

    Article  Google Scholar 

  26. REJESKI D, ZHAO F, HUANG Y. Research needs and recommendations on environmental implications of additive manufacturing [J]. Additive Manufacturing, 2018, 19: 21–28. DOI: https://doi.org/10.1016/j.addma.2017.10.019.

    Article  Google Scholar 

  27. TANG H P, QIAN M, LIU N, ZHANG X Z, YANG G Y, WANG J. Effect of powder reuse times on additive manufacturing of Ti-6Al-4V by selective electron beam melting [J]. JOM, 2015, 67(3): 555–563. DOI: https://doi.org/10.1007/s11837-015-1300-4.

    Article  Google Scholar 

  28. HANN B A. Powder reuse and its effects on laser based powder fusion additive manufactured alloy 718 [C]// SAE 2016 Aerospace Systems and Technology Conference. 2016: 209–213. DOI: https://doi.org/10.4271/2016-01-2071.

  29. XIA Y, FANG Z Z, FAN D, SUN P, ZHANG Y, ZHU J. Hydrogen enhanced thermodynamic properties and kinetics of calciothermic deoxygenation of titanium-oxygen solid solutions [J]. International Journal of Hydrogen Energy, 2018, 43(27): 11939–11951. DOI: https://doi.org/10.1016/j.ijhydene.2018.03.170.

    Article  Google Scholar 

  30. FANG Z Z, SUN P, XIA Y, ZHANG Y. Molten salt de-oxygenation of metal powders: USA, EP20150865502 [P]. 2018-08-22.

  31. XIA Y, FANG Z Z, SUN P, ZHANG Y, ZHANG T, FREE M. The effect of molten salt on oxygen removal from titanium and its alloys using calcium [J]. Journal of Materials Science, 2017, 52(7): 4120–4128. DOI: https://doi.org/10.1007/s10853-016-0674-1.

    Article  Google Scholar 

  32. XIA Y, FANG Z Z, SUN P, ZHANG Y, ZHU, J. Novel method for making biomedical segregation-free Ti-30Ta alloy spherical powder for additive manufacturing [J]. JOM, 2018, 70(3): 364–369. DOI: https://doi.org/10.1007/s11837-017-2713-z.

    Article  Google Scholar 

  33. MCCRACKEN C, ROBISON J, MOTCHENBACHER C J. Manufacture of HDH low oxygen titanium-6aluminium-4vanadium (Ti-6-4) powder incorporating a novel powder de-oxidation step [C]// Euro PM2009 Congress Technical Presentations on Powder Manufacture & Processing. The European Powder Metallurgy Association, 2009: 7146–7152.

  34. FISHER R L. Deoxidation of a refractory metal: Canada, CA19912075922 [P]. 1991-08-23.

  35. ZHANG Y, FANG Z Z, XIA Y, SUN P, van DEVENER B, FREE M, LEFLER H, ZHENG S. Hydrogen assisted magnesiothermic reduction of TiO2 [J]. Chemical Engineering Journal, 2017, 308: 299–310. DOI: https://doi.org/10.1016/j.cej.2016.09.066.

    Article  Google Scholar 

  36. XIA Y, FANG Z Z, ZHANG Y, LEFLER H, ZHANG T, SUN P, HUANG Z. Hydrogen assisted magnesiothermic reduction (HAMR) of commercial TiO2 to produce titanium powder with controlled morphology and particle size [J]. Materials Transactions, 2017, 58(3): 355–360. DOI: https://doi.org/10.2320/matertrans.MK201628.

    Article  Google Scholar 

  37. ZHANG Y Z, FANG Z Z, SUN P, ZHANG T, XIA Y, ZHOU C, HUANG Z. Thermodynamic destabilization of Ti-O solid solution by H2 and deoxygenation of Ti using Mg [J]. Journal of the American Chemical Society, 2016, 138(22): 6916–6919. DOI: https://doi.org/10.1021/jacs.6b00845.

    Article  Google Scholar 

  38. ZHANG Y, FANG Z Z, XIA Y, HUANG Z, LEFLER H, ZHANG T, SUN P, FREE M, GUO J. A novel chemical pathway for energy efficient production of Ti metal from upgraded titanium slag [J]. Chemical Engineering Journal, 2016, 286: 517–527. DOI: https://doi.org/10.1016/j.cej.2015.10.090.

    Article  Google Scholar 

  39. HONG C I, OH J M, PARK J, YOON J M, LIM J W. Efficiency of calcium vapor tunnels on non-contact deoxidation of irregular titanium powder [J]. Advanced Powder Technology, 2018, 29(7): 1640–1643. DOI: https://doi.org/10.1016/j.apt.2018.03.029.

    Article  Google Scholar 

  40. OH J M, HONG C I, LIM J W. Comparison of deoxidation capability on the specific surface area of irregular titanium powder using calcium reductant [J]. Advanced Powder Technology, 2019, 30(1): 1–5. DOI: https://doi.org/10.1016/j.apt.2018.08.023.

    Article  Google Scholar 

  41. KIM T, OH J M, CHO G, PARK J, LIM J W. Comparison of deoxidation capability of solid solution and intermetallic titanium alloy powders deoxidized by calcium vapor [J]. Journal of Alloys and Compounds, 2020, 828: 154220. DOI: https://doi.org/10.1016/j.jallcom.2020.154220.

    Article  Google Scholar 

  42. KIM T, KIM K, OH J M, PARK J, LIM J W. Preparation method of low-oxygen Ti-6Al-4V alloy by solid state re-deoxidation using calcium [J]. Materials Science and Technology, 2019, 35(6): 702–708. DOI: https://doi.org/10.1080/02670836.2019.1583846.

    Article  Google Scholar 

  43. XIA Y, ZHAO J L, TIAN Q H, GUO X Y. Review of the effect of oxygen on titanium and deoxygenation technologies for recycling of titanium metal [J]. JOM, 2019, 71(9): 3209–3220. DOI: https://doi.org/10.1007/s11837-019-03649-8.

    Article  Google Scholar 

  44. TANINOUCHI Y K, HAMANAKA Y, OKABE T H. Electrochemical deoxidation of titanium and its alloy using molten magnesium chloride [J]. Metallurgical and Materials Transactions B, 2016, 47(6): 3394–3404. DOI: https://doi.org/10.1007/s11663-016-0792-9.

    Article  Google Scholar 

  45. KONG L X, OUCHI T, ZHENG C Y, OKABE T H. Electrochemical deoxidation of titanium scrap in MgCl2-HoCl3 system [J]. Journal of the Electrochemical Society, 2019, 166(13): E429–E436. DOI: https://doi.org/10.1149/2.1011913jes.

    Article  Google Scholar 

  46. ZHENG C Y, OUCHI T, KONG L X, TANINOUCHI Y, OKABE T H. Electrochemical deoxidation of titanium in molten MgCl2-YCl3 [J]. Metallurgical and Materials Transactions B, 2019, 50(4): 1652. DOI: https://doi.org/10.1007/s11663-019-01602-3.

    Article  Google Scholar 

  47. SUN P, FANG Z Z, ZHANG Y, XIA Y. Microstructure and mechanical properties of Ti-6Al-4V fabricated by selective laser melting of powder produced by granulation-sintering-deoxygenation method [J]. The Minerals, Metals & Materials Society, 2017, 69(12): 2731–2737. DOI: https://doi.org/10.1007/s11837-017-2584-3.

    Article  Google Scholar 

  48. SEONG S, YOUNOSSI O, GOLDSMITH B W, LANG T, NEUMANN M. Titanium: industrial base, price trends, and technology initiatives [M]. Rand Corporation, 2009.

  49. SUN P, FANG Z Z, XIA Y, ZHANG Y, ZHOU C. A novel method for production of spherical Ti-6Al-4V powder for additive manufacturing [J]. Powder Technology, 2016, 301: 331–335. DOI: https://doi.org/10.1016/j.powtec.2016.06.022.

    Article  Google Scholar 

  50. FANG Z Z, XIA Y, SUN P, ZHANG Y. Production of substantially spherical metal powders: USA, US201615234973 [P]. 2018-11-20.

  51. XIA Y, ZHAO J L, DONG Z W, GUO X Y, TIAN Q H, LIU Y. A novel method for making Co-Cr-Mo alloy spherical powder by granulation and sintering [J]. JOM, 2020, 72(3): 1279–1285. DOI: https://doi.org/10.1007/s11837-020-04009-7.

    Article  Google Scholar 

  52. GOMEZ M, MANCHA H, SALINAS A, RODRIGUEZ J, ESCOBEDO J, CASTRO M, MENDEZ M. Relationship between microstructure and ductility of investment cast ASTM F–75 implant alloy [J]. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials and The Japanese Society for Biomaterials, 1997, 34(2): 157–163. DOI: https://doi.org/10.1002/(sici)1097-4636(199702)34:2<157::aid-jbm3>3.0.co;2-p.

    Article  Google Scholar 

  53. ZHOU Y L, NIINOMI M, AKAHORI T. Effects of Ta content on Young’s modulus and tensile properties of binary Ti–Ta alloys for biomedical applications [J]. Materials Science and Engineering A, 2004, 371(1, 2): 283–290. DOI: https://doi.org/10.1016/j.msea.2003.12.011.

    Article  Google Scholar 

  54. ZHOU Y L, NIINOMI M, AKAHORI T. Decomposition of martensite α″during aging treatments and resulting mechanical properties of Ti–Ta alloys [J]. Materials Science and Engineering A, 2004, 384(1, 2): 92–101. DOI: https://doi.org/10.1016/j.msea.2004.05.084.

    Article  Google Scholar 

  55. WANG Y H, CHEN X Z, KONOVALOV S V. Additive manufacturing based on welding arc: a low-cost method [J]. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2017, 11(6): 1317–1328. DOI: https://doi.org/10.1134/S1027451017060210.

    Article  Google Scholar 

  56. PETRAT T, GRAF B, GUMENYUK A, RETHMEIER M. Laser metal deposition as repair technology for a gas turbine burner made of inconel 718 [J]. Physics Procedia, 2016, 83: 761–768. DOI: https://doi.org/10.1016/j.phpro.2016.08.078.

    Article  Google Scholar 

  57. MANDIL G, PARIS H, SUARD M. Building new entities from existing titanium part by electron beam melting: microstructures and mechanical properties [J]. The International Journal of Advanced Manufacturing Technology, 2016, 85(5–8): 1835–1846. DOI: https://doi.org/10.1007/s00170-015-8049-3.

    Article  Google Scholar 

  58. WILSON J M, PIYA C, SHIN Y C, ZHAO F, RAMANI K. Remanufacturing of turbine blades by laser direct deposition with its energy and environmental impact analysis [J]. Journal of Cleaner Production, 2014, 80: 170–178. DOI: https://doi.org/10.1016/j.jclepro.2014.05.084.

    Article  Google Scholar 

  59. LIU H, HU Z, QIN X, WANG Y, ZHANG J, HUANG S. Parameter optimization and experimental study of the sprocket repairing using laser cladding [J]. The International Journal of Advanced Manufacturing Technology, 2017, 91(9–12): 3967–3975. DOI: https://doi.org/10.1007/s00170-017-0066-y.

    Article  Google Scholar 

  60. XU Lei, CAO Hua-jun, LIU Hai-long, ZHANG Yu-bo. Study on laser cladding remanufacturing process with FeCrNiCu alloy powder for thin-wall impeller blade [J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(5–8): 1383–1392. DOI: https://doi.org/10.1007/s00170-016-9445-z.

    Google Scholar 

  61. PENARANDA X, MORALEJO S, LAMIKIZ A, FIGUERAS J. An adaptive laser cladding methodology for blade tip repair [J]. The International Journal of Advanced Manufacturing Technology, 2017, 92: 4337–4343. DOI: https://doi.org/10.1007/s00170-017-0500-1.

    Article  Google Scholar 

  62. ZHU L, WANG S, PAN H, YUAN C, CHEN X. Research on remanufacturing strategy for 45 steel gear using H13 steel powder based on laser cladding technology [J]. Journal of Manufacturing Processes, 2020, 49: 344–354. DOI: https://doi.org/10.1016/j.jmapro.2019.12.009.

    Article  Google Scholar 

  63. WALACHOWICZ F, BERNSDORF I, PAPENFUSS U, ZELLER C, GRAICHEN A, NAVROTSKY V, RAJVANSHI N, KIENER C. Comparative energy, resource and recycling lifecycle analysis of the industrial repair process of gas turbine burners using conventional machining and additive manufacturing [J]. Journal of Industrial Ecology, 2017, 21: S203–S215. DOI: https://doi.org/10.1111/jiec.12637.

    Article  Google Scholar 

  64. ZHANG X, LI W, CUI W, LIOU F. Modeling of worn surface geometry for engine blade repair using laser-aided direct metal deposition process [J]. Manufacturing Letters, 2018, 15: 1–4. DOI: https://doi.org/10.1016/j.mfglet.2017.11.001.

    Article  Google Scholar 

  65. ZHANG X, LI W, ADKISON K M, LIOU F. Damage reconstruction from tri-dexel data for laser-aided repairing of metallic components [J]. The International Journal of Advanced Manufacturing Technology, 2018, 96: 3377–3390. DOI: https://doi.org/10.1007/s00170-018-1830-3.

    Article  Google Scholar 

  66. WAHAB D A, AZMAN A H. Additive manufacturing for repair and restoration in remanufacturing: An overview from object design and systems perspectives [J]. Processes, 2019, 7(11): 802. DOI: https://doi.org/10.3390/pr7110802.

    Article  Google Scholar 

  67. DASS A, MORIDI A. State of the art in directed energy deposition: From additive manufacturing to materials design [J]. Coatings, 2019, 9(7): 418. DOI: https://doi.org/10.3390/coatings9070418.

    Article  Google Scholar 

  68. DAS S, BANSAL R, GAMBONE J. Systems and methods for additive manufacturing and repair of metal components: USA, US201615382411 [P]. 2016-12-16.

  69. BAUGHMAN B G, WINCHESTER G, HEHMANN W F, GODFREY D G. Methods for the repair of gas turbine engine components using additive manufacturing techniques: US. Patent 9,174,312 [P]. 2015-11-03.

  70. SINGH P, QI H, AZER M N, KULKARNI P M. Laser net shape manufacturing and repair using a medial axis toolpath deposition method: US. Patent Application 11/669,647 [P]. 2008-07-31.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Xia  (夏阳) or Xue-yi Guo  (郭学益).

Additional information

Foundation item: Project(51922108) supported by the National Natural Science Foundation of China; Project(2019JJ20031) supported by Hunan Natural Science Foundation, China; Project(2019SK2061) supported by Hunan Key Research and Development Program, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Y., Dong, Zw., Guo, Xy. et al. Towards a circular metal additive manufacturing through recycling of materials: A mini review. J. Cent. South Univ. 27, 1134–1145 (2020). https://doi.org/10.1007/s11771-020-4354-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4354-6

Key words

关键词

Navigation