Skip to main content

Advertisement

Log in

Review of the Effect of Oxygen on Titanium and Deoxygenation Technologies for Recycling of Titanium Metal

  • Recycling Methods for Industrial Metals and Minerals
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The high reactivity and poor machinability of titanium contribute to its high-cost fabrication, low material utilization rate, and large amount of titanium scrap production. Titanium scrap is mainly contaminated by oxygen and forms an oxygen-enriched layer on the surface of titanium. Oxygen has a deleterious effect on the ductility, toughness, and notch sensitivity of titanium but strengthens it. Traditionally, the contamination was removed by mechanical grinding and chemical acid cleaning. However, these processes generate substantial waste products and cause environmental problems. Deoxygenation is an alternative method for recycling of titanium and is critical when producing high-value powder products from the scrap. The typical deoxygenation technologies include thermochemical and electrolysis methods. This article mainly reviews the effect of oxygen on titanium and several deoxygenation technologies for recycling of titanium. The fundamental theory behind deoxygenation is included as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Qian, Int. J. Powder Metall. 46, 29 (2010).

    Google Scholar 

  2. Z.Z. Fang, J.D. Paramore, P. Sun, K.R. Chandran, Y. Zhang, Y. Xia, F. Cao, M. Koopman, and M. Free, Int. Mater. Rev. 63, 407 (2018).

    Article  Google Scholar 

  3. F. Froes, H. Friedrich, J. Kiese, and D. Bergoint, JOM 56, 40 (2004).

    Article  Google Scholar 

  4. G. Welsch, R. Boyer, and E. Collings, Materials Properties Handbook: Titanium Alloys (Russell Township: ASM international, 1993).

    Google Scholar 

  5. G. Lütjering and J.C. Williams, Titanium (Berlin: Springer, 2007).

    Google Scholar 

  6. C.R. Dandekar, Y.C. Shin, and J. Barnes, Int. J. Mach. Tool. Manuf. 50, 174 (2010).

    Article  Google Scholar 

  7. M. Shukla, R.M. Mahamood, E.T. Akinlabi, and S. Pityana, World Acad. Sci. Eng. Technol. Int. J. Mech. Aerospace Ind. Mechatron. Manuf. Eng. 6, 2475 (2012).

    Google Scholar 

  8. O. Takeda and T.H. Okabe, JOM 71, 1981 (2018).

    Article  Google Scholar 

  9. N. Mohite, S. Biradar, J.S. Jha, S. Mishra, and A. Tewari, Development and removal of alpha-case layer from heat treated titanium alloys. ASME 2017 Gas Turbine India Conference: American Society of Mechanical Engineers; 2017. p. V002T10A11-VT10A11.

  10. R. Gaddam, B. Sefer, R. Pederson, and M.L. Antti, Mater. Charact. 99, 166 (2015).

    Article  Google Scholar 

  11. S.Y. Sung, B.S. Han, and Y.J. Kim, Titanium Alloys-Towards Achieving Enhanced Properties for Diversified Applications (Rijeka: Intech, 2012).

    Google Scholar 

  12. Oak Ridage National Laboratory, Aerospace Workshop Summary Report, US Department of Energy, 2010.

  13. S. Seong, O. Younossi, and B.W. Goldsmith, Titanium: Industrial Base, Price Trends, and Technology Initiatives (Santa Monica: Rand Corporation, 2009).

    Book  Google Scholar 

  14. Z.Z. Fang and P. Sun, Key engineering materials, Vol. 15 (Stafa: Trans Tech Publ, 2012).

    Google Scholar 

  15. USGS Minerials Information: Titanium Statistics and Information 2018.

  16. H. Bomberger and F. Froes, JOM 36, 39 (1984).

    Article  Google Scholar 

  17. B. Rotmann, C. Lochbichler, and B. Friedrich, challenges in titanium recycling-do we need a new specification for secondary alloys. Proceedings of EMC 2011.

  18. Presentation by Golden Titanium. Recycling titanium, the role of the titanium scrap processor Titanium 2015, Octorber 4–7, Orlando, FL, USA.

  19. T.H. Okabe and T. Ouchi, Recycling of critical metals (Cham: Springer International Publishing, 2019), p. 237.

    Google Scholar 

  20. ASTM International, Standard Specification for Titanium Sponge. ASTM B299, 2018.

  21. ASTM International, Standard Specification for Titanium and Titanium Alloy Strip, Sheet, and Plate. ASTM B265, 2015.

  22. ASTM International, Standard Specification for Titanium and Titanium Alloy Bars and Billets. ASTM B348, 2013.

  23. C. Zheng, T. Ouchi, A. Iizuka, Y.K. Taninouchi, and T.H. Okabe, Metall. Mater. Trans. B 50, 622 (2019).

    Article  Google Scholar 

  24. P. Sun, Z.Z. Fang, Y. Xia, Y. Zhang, and C. Zhou, Powder Technol. 301, 331 (2016).

    Article  Google Scholar 

  25. X. Goso and A. Kale, J. South Afr. Inst. Min. Metall. 111, 203 (2011).

    Google Scholar 

  26. C.G. McCracken, C. Motchenbacher, and D.P. Barbis, Int. J. Powder Metall. 46, 19 (2010).

    Google Scholar 

  27. M.S.R. Bolívar, B. Friedrich, and I.P. Metallurgy, Synthesis of titanium via magnesiothermic re-duction of TiO2 (Pigment). Proceedings of EMC2009. p. 1.

  28. E. Akman and E. Cerkezoglu, Opt. Lasers Eng. 84, 37 (2016).

    Article  Google Scholar 

  29. A.J. Antończak, B. Stępak, P.E. Kozioł, and K.M. Abramski, Appl. Phys. A 115, 1003 (2014).

    Article  Google Scholar 

  30. A.P. Del Pino, P. Serra, and J. Morenza, Thin Solid Films 415, 201 (2002).

    Article  Google Scholar 

  31. M.V. Diamanti, B. Del Curto, and M. Pedeferri, Color Research & Application: Endorsed by Inter‐Society Color Council, The Colour Group (Great Britain), Canadian Society for Color, Color Science Association of Japan, Dutch Society for the Study of Color, The Swedish Colour Centre Foundation, Colour Society of Australia, Centre Français de la Couleur, 33, 221 (2008).

  32. A. Kahveci and G. Welsch, Scr. Metall. 20, 1287 (1986).

    Article  Google Scholar 

  33. Z. Liu and G. Welsch, Metall. Trans. A 19, 527 (1988).

    Article  Google Scholar 

  34. A.K. Swarnakar, O. Van der Biest, and B. Baufeld, J. Mater. Sci. 46, 3802 (2011).

    Article  Google Scholar 

  35. H. Ogden and R. Jaffee, The Effects of Carbon, Oxygen, and Nitrogen on the Mechanical Properties of Titanium and Titanium Alloys (Columbus: Battelle Memorial Inst. Titanium Metallurgical Lab, 1955).

    Book  Google Scholar 

  36. M. Yan, W. Xu, M. Dargusch, H. Tang, M. Brandt, and M. Qian, Powder Metall. 57, 251 (2014).

    Article  Google Scholar 

  37. A.T. Sidambe, F. Derguti, and I. Todd, Key Eng. Mater. 520, 145 (2012).

    Article  Google Scholar 

  38. T. Ebel, Metal injection molding (MIM) of titanium and titanium alloys, Handbook of metal injection molding (Amsterdam: Elsevier, 2012), p. 415.

    Book  Google Scholar 

  39. T. Ebel, V. Friederici, P. Imgrund, and T. Hartwig, Metal injection molding of titanium, Titanium powder metallurgy (Amsterdam: Elsevier, 2015), p. 337.

    Book  Google Scholar 

  40. T. Mckinley, J. Electrochem. Soc. 103, 561 (1956).

    Article  Google Scholar 

  41. W.L. Finlay and J.A. Snyder, JOM 2, 277 (1950).

    Article  Google Scholar 

  42. B. Barkia, V. Doquet, J.P. Couzinié, and I. Guillot, Mater. Sci. Eng. A 624, 79 (2015).

    Article  Google Scholar 

  43. C. Baptista, M. Barboza, A. Adib, M. Andrade, C. Otani, and D. Reis, Mater. Des. 30, 1503 (2009).

    Article  Google Scholar 

  44. Y. Xia, Z.Z. Fang, D. Fan, P. Sun, Y. Zhang, and J. Zhu, Int. J. Hydrog. Energy 43, 11939 (2018).

    Article  Google Scholar 

  45. M. Song, S. Han, D. Min, G. Choi, and J. Park, Scr. Mater. 59, 623 (2008).

    Article  Google Scholar 

  46. M.H. Song, S.M. Han, G.S. Choi, D.J. Min, and J.H. Park, Metall. Mater. Trans. A 40, 495 (2009).

    Article  Google Scholar 

  47. A.D. Mah, Thermodynamic properties of titanium-oxygen solutions and compounds. Report of Investigations 1957.

  48. T.H. Okabe, R.O. Suzuki, T. Oishi, and K. Ono, Mater. Trans. 32, 485 (1991).

    Article  Google Scholar 

  49. T.H. Okabe, R.O. Suzuki, T. Oishi, and K. Ono, Tetsu-to-Hagané 77, 93 (1991).

    Article  Google Scholar 

  50. K. Ono and R.O. Suzuki, JOM 54, 59 (2002).

    Article  Google Scholar 

  51. R.O. Suzuki, M. Aizawa, and K. Ono, J. Alloys Compd. 288, 173 (1999).

    Article  Google Scholar 

  52. Y. Zhang, Z.Z. Fang, P. Sun, T. Zhang, Y. Xia, and C. Zhou, J. Amer. Chem. Soc. 138, 6916 (2016).

    Article  Google Scholar 

  53. R.L. Fisher, US patent 4923531, 1990.

  54. R.L. Fisher, US patent 5522935,1991.

  55. C. McCracken, J. Robison, and C. Motchenbacher, Manufacture of HDH low oxygen titanium-6aluminium-4vanadium (Ti-6-4) powder incorporating a novel powder de-oxidation step. The European Powder Metallurgy Association: Shrewsbury, UK 2009:7146-7152.

  56. T. Yagura and K. Ono, Mater. Trans. 42, 2492 (2001).

    Article  Google Scholar 

  57. T. Okabe, T. Oishi, and K. Ono, Metall. Trans. B 23, 583 (1992).

    Article  Google Scholar 

  58. C.I. Hong and J.W. Lim, Korean J. Met. Mater. 56, 205 (2018).

    Google Scholar 

  59. C.I. Hong, J.M. Oh, J. Park, J.M. Yoon, and J.W. Lim, Adv. Powder Technol. 29, 1640 (2018).

    Article  Google Scholar 

  60. S.J. Kim, J.M. Oh, and J.W. Lim, Met. Mater. Inter. 22, 658 (2016).

    Article  Google Scholar 

  61. T. Kim, K. Kim, J.M. Oh, J. Park, and J.W. Lim, Mater. Sci. Technol. 35, 702 (2019).

    Article  Google Scholar 

  62. J.M. Oh, I.H. Choi, C.Y. Suh, H. Kwon, J.W. Lim, and K.M. Roh, Met. Mater. Int. 22, 488 (2016).

    Article  Google Scholar 

  63. J.M. Oh, C.I. Hong, and J.W. Lim, Adv. Powder Technol. 30, 1 (2019).

    Article  Google Scholar 

  64. J.M. Oh, H. Kwon, W. Kim, and J.W. Lim, Thin Solid Films 551, 98 (2014).

    Article  Google Scholar 

  65. J.M. Oh, C.Y. Suh, H. Kwon, J.W. Lim, and K.-M. Roh, J. Korean Inst. Resour. Recyel. 24, 21 (2015).

    Google Scholar 

  66. J. W. Lim, J. M. Oh, L. Back Kyu, C. Y. Suh, and S. W. Cho, US patent 8449813, 2013.

  67. K.M. Roh, C.Y. Suh, J.M. Oh, W. Kim, H. Kwon, and J.W. Lim, Powder Technol. 253, 266 (2014).

    Article  Google Scholar 

  68. Y. Xia, Z.Z. Fang, P. Sun, Y. Zhang, T. Zhang, and M. Free, J. Mater. Sci. 52, 4120 (2017).

    Article  Google Scholar 

  69. Y. Xia, Z.Z. Fang, T. Zhang, Y. Zhang, P. Sun, and Z. Huang, Proceedings of the 13th world conference on titanium, Wiley Online Library, 2016, p. 135.

  70. Y. Zhang, Z.Z. Fang, Y. Xia, Z. Huang, H. Lefler, T. Zhang, P. Sun, M.L. Free, and J. Guo, Chem. Eng. J. 286, 517 (2016).

    Article  Google Scholar 

  71. Z.Z. Fang, P. Sun, Y. Xia, and Y. Zhang, Molten salt de-oxygenation of metal powders. US Patent App. 15/314,464, 2017.

  72. H. Lefler, Z.Z. Fang, Y. Zhang, P. Sun, and Y. Xia, Metall. Mater. Trans. B 49, 2998 (2018).

    Article  Google Scholar 

  73. Q. Li, X. Zhu, Y. Zhang, Z.Z. Fang, S. Zheng, P. Sun, Y. Xia, P. Li, Y. Zhang, and X. Zou, Chem. Eng. Sci. 195, 484 (2019).

    Article  Google Scholar 

  74. Y. Xia, Z.Z. Fang, Y. Zhang, H. Lefler, T. Zhang, P. Sun, and Z. Huang, Mater. Trans. 58, 355 (2017).

    Article  Google Scholar 

  75. Y. Zhang, Z.Z. Fang, P. Sun, Y. Xia, M. Free, Z. Huang, H. Lefler, T. Zhang, and J. Guo, Chem. Eng. J. 327, 169 (2017).

    Article  Google Scholar 

  76. Y. Zhang, Z.Z. Fang, P. Sun, Y. Xia, and C. Zhou, US Patent 9669464, 2017.

  77. Y. Zhang, Z.Z. Fang, Y. Xia, P. Sun, B. Van Devener, M. Free, H. Lefler, and S. Zheng, Chem. Eng. J. 308, 299 (2017).

    Article  Google Scholar 

  78. G.Z. Chen, D.J. Fray, and T.W. Farthing, Metall. Mater. Trans. B 32, 1041 (2001).

    Article  Google Scholar 

  79. T. Okabe, M. Nakamura, T. Oishi, and K. Ono, Metall. Mater. Trans. B 24, 449 (1993).

    Article  Google Scholar 

  80. K. Hirota, T. Okabe, F. Saito, Y. Waseda, and K. Jacob, J. Alloys Compd. 282, 101 (1999).

    Article  Google Scholar 

  81. M. Nakamura, T.H. Okabe, T. Oishi, and K. Ono, Proceedings of International Symposium on Molten Salt Chemistry and Technology, 1993, p. 529.

  82. Y.K. Taninouchi, Y. Hamanaka, and T.H. Okabe, Metall. Mater. Trans. B 47, 3394 (2016).

    Article  Google Scholar 

  83. T. Okabe, Y. Hamanaka, and Y. Taninouchi, Faraday Discuss. 190, 109 (2016).

    Article  Google Scholar 

  84. J.D. Corbett, J.D. Smith, and E. Garcia, J. Less Common Met. 115, 343 (1986).

    Article  Google Scholar 

  85. H. Sano, M. Tashiro, T. Fujisawa, and C Yamauchi, Proc Fall Meeting of MMIJ (Mining Mater Process Inst Japan), Sapporo, Japan 99 (1997).

  86. H. Sano, M. Tashiro, T. Fujisawa, and C. Yamauchi, Mater. Trans. 40, 263 (1999).

    Article  Google Scholar 

  87. T.H. Okabe, C. Zheng, and Y.-K. Taninouchi, Metall. Mater. Trans. B 49, 1056 (2018).

    Article  Google Scholar 

  88. M. Qian, Y. Yang, M. Yan, and S.D. Luo, Key Engineering Materials, Vol. 24 (Stafa: Trans Tech Publ, 2012).

    Google Scholar 

  89. M. Yan, Y. Liu, Y. Liu, C. Kong, G. Schaffer, and M. Qian, Scripta Mater. 67, 491 (2012).

    Article  Google Scholar 

  90. M. Yan, H. Tang, and M. Qian, Scavenging of oxygen and chlorine from powder metallurgy (PM) titanium and titanium alloys, Titanium powder metallurgy (Amsterdam: Elsevier, 2015), p. 253.

    Google Scholar 

  91. Y. Yang, S. Luo, and M. Qian, Mater. Sci. Eng. A 618, 447 (2014).

    Article  Google Scholar 

  92. T. Yahata, T. Ikeda, and M. Maeda, Metall. Trans. B 24, 599 (1993).

    Article  Google Scholar 

  93. Y. Su, L. Wang, L. Luo, X. Jiang, J. Guo, and H. Fu, Int. J. Hydrog. Energy 34, 8958 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the CSU Start-up Fund and the Hunan Natural Science Fund for Distinguished Young Scholars (2019JJ20031).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Xia, Qinghua Tian or Xueyi Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Y., Zhao, J., Tian, Q. et al. Review of the Effect of Oxygen on Titanium and Deoxygenation Technologies for Recycling of Titanium Metal. JOM 71, 3209–3220 (2019). https://doi.org/10.1007/s11837-019-03649-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03649-8

Navigation