Skip to main content
Log in

Electrochemical Deoxidation of Titanium in Molten MgCl2–YCl3

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A new electrochemical deoxidation process for Ti, where a mixture of magnesium chloride and yttrium chloride (MgCl2–YCl3) is used as flux, was developed. In the new process, Ti and carbon were used as the cathode and anode, respectively. By elucidating the system using an E-pO2− diagram and the experimental results, the reaction mechanism was proposed. Mg is deposited on the Ti cathode and reduces the oxygen in Ti to oxide ions (O2−). The activity of the generated O2−, \(a_{\text O^{2-}}\), in the system is effectively kept at a low level by the formation of yttrium oxychloride, and is further decreased by the electrochemical oxidation reaction on the anode. The process effectively deoxidizes Ti to the level of 100 mass ppm of oxygen concentration at 1200 K. In addition, the oxygen concentration in the Ti sample was maintained at the level of 500 mass ppm O even with the addition of O2− sources. Furthermore, a new concept of the industrial Ti-recycling process based on this new deoxidation process was depicted. The obtained results indicate that this new deoxidation technique can be applied in the recycling process of Ti scrap containing a large amount of oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H. Hira: Journal of The Japan Institute of Light Metals, 2015, vol. 65 pp. 426–31.

    Article  Google Scholar 

  2. T. Suzuki: Titanium Japan, 2011, vol. 59, pp. 203-9. (in Japanese).

    Google Scholar 

  3. Y. Taninouchi, Y. Hamanaka and T. H. Okabe: Metall. Mater. Trans. B, 2016, vol. 47 pp. 3394-404.

    Article  Google Scholar 

  4. O. Takeda and T.H. Okabe: JOM, 2018. https://doi.org/10.1007/s11837-018-3278-1.

  5. T. H. Okabe, Y. Hamanaka and Y. Taninouchi: Faraday Discuss., 2016, vol. 190 pp. 109–26.

    Article  Google Scholar 

  6. T. B. Massalski, H. Okamoto, P. R. Subramanian and L. Kacprzak, Binary Alloy Phase Diagrams (Metals Park, OH: American Society for Metals, 1990).

    Google Scholar 

  7. O. Kubaschewski, W. A. Dench: J. Inst. Metals, 1953, vol. 82 pp. 87–91.

    Google Scholar 

  8. K. Ono and S. Miyazaki: J. Japan Inst. Metals, 1985, vol. 49 pp. 871–5 (in Japanese).

    Article  Google Scholar 

  9. R.L. Fisher: US Patent, 1990, No. 4923531A (UK Patent No. GB 2224749A, 1989).

  10. R.L. Fisher: US Patent, 1991, No. 5022935.

  11. T. H. Okabe, R. O. Suzuki, T. Oishi, and K. Ono: Mater. Trans. JIM, 1991, vol. 32, pp. 485–88.

    Article  Google Scholar 

  12. T. H. Okabe, R. O. Suzuki, T. Oishi, and K. Ono: J. Iron Steel Inst. Jpn., 1991, vol. 77, pp. 93–9 (in Japanese).

    Article  Google Scholar 

  13. T. H. Okabe, T. Oishi, and K. Ono: J. Alloys Compd., 1992, vol. 184, pp. 43–56.

    Article  Google Scholar 

  14. T. H. Okabe, T. Oishi, and K. Ono: Metull. Trans. B, 1992, vol. 23 pp. 583–90.

    Article  Google Scholar 

  15. R.L. Fisher and S.R. Seagle: US Patent, 1993, No. 5211775 A.

  16. R.L. Fisher and S.R. Seagle: in Proc. Titanium’92, Science and Technology, vol. 3, F.H. Froes and I. Caplan, eds., TMS, Warrendale, PA, USA, 1993, pp. 2265–72.

  17. T. H. Okabe, M. Nakamura, T. Oishi, and K. Ono: Metall. Mater. Trans. B, 1993, 24B, pp. 449–55.

    Article  Google Scholar 

  18. M. Nakamura, T.H. Okabe, T. Oishi, and K. Ono: Proceedings of International Symposium on Molten Salt Chemistry and Technology, 1993, pp. 529–40.

  19. G. Z. Chen, D. J. Fray, and T. W. Farthing: Nature, 2000, vol. 407, pp. 361–64.

    Article  Google Scholar 

  20. G. Z. Chen, D. J. Fray, and T. W. Farthing: Metall. Mater. Trans. B, 2001, vol. 32, pp. 1041–52.

    Article  Google Scholar 

  21. S.-M. Han, Y.-S. Lee, J.-H. Park, G.-S. Choi, and D.-J. Min: Mater. Trans., 2009, vol. 50 pp. 215–18.

    Article  Google Scholar 

  22. J.-M. Oh, B.-K. Lee, C.-Y. Suh, S.-W. Cho and J.-W. Lim: Powder Metallurgy, 2012, vol. 55, pp. 402–4.

    Article  Google Scholar 

  23. J.-M. Oh, K.-M. Roh, B.-K. Lee, C.-Y. Suh, W. Kim, H. Kwon and J.-W. Lim: J. Alloys Compd., 2014, vol. 593, pp. 61–6.

    Article  Google Scholar 

  24. J.-M. Oh, H. Kwon, W. Kim, and J.-W. Lim: Thin Solid Films, 2014, vol. 551, pp. 98–101.

    Article  Google Scholar 

  25. K.-M. Roh, C.-Y. Suh, J.-M. Oh, W. Kim, H. Kwon and J.-W. Lim: Powder Technology, 2014, vol. 253, pp. 266–69.

    Article  Google Scholar 

  26. J. M. Oh, I. H. Choi, C. Y. Suh, H. Kwon, J. W. Lim, and K. M. Roh: Met. Mater. Int., 2016, vol. 22 pp. 488-92.

    Article  Google Scholar 

  27. S.-J. Kim, J.-M. Oh, and J.-W. Lim: Met. Mater. Int., 2016, vol. 22, pp. 658–62.

    Article  Google Scholar 

  28. Y. Zhang, Z.Z. Fang, Y. Xia, Z. Huang, H. Lefler, T. Zhang, P. Sun, M.L. Free, and J. Guo: Chem. Eng. J., 2016, vol. 286, pp. 517–27.

    Article  Google Scholar 

  29. Y. Xia, Z.Z. Fang, P. Sun, Y. Zhang, T. Zhang, and M. Free: J. Mater. Sci., 2017, vol. 52, pp. 4120–8.

    Article  Google Scholar 

  30. J. Reitz, C. Lochbichler, and B. Friedrich: Intermetallics, 2011, vol. 19, pp. 762–8.

    Article  Google Scholar 

  31. M. Bartosinski, S. Hassan-Pour, B. Friedrich, S. Ratiev, and A. Ryabtsev: Mater. Sci. Eng., 2016, vol. 143, 012009.

    Google Scholar 

  32. B. M. Moon, J. H. Seo, H. J. Lee, K. H. Jung, J. H. Park, H. D. Jung: J. Alloy. Compd., 2017, vol. 727, pp. 931–9.

    Article  Google Scholar 

  33. T. Yahata, T. Ikeda, M. Maeda: Metall. Trans. B, 1993, vol. 24, pp. 599–604.

    Article  Google Scholar 

  34. J.-M. Oh, K.-M. Roh, and J.-W. Lim: Int. J. Hydrog. Energy, 2016, vol. 41, pp. 23033–41.

    Article  Google Scholar 

  35. Y. Su, L. Wang, L. Luo, X. Jiang, J. Guo, and H. Fu: Int. J. Hydrog. Energy, 2009, vol. 34, pp. 8958–63.

    Article  Google Scholar 

  36. Y. Zhang, Z.Z. Fang, P. Sun, T. Zhang, Y. Xia, C. Zhou, and Z. Huang: J. Am. Ceram. Soc., 2016, vol. 138, pp. 6916–19.

    Google Scholar 

  37. Y. Zhang, Z.Z. Fang, Y. Xia, P. Sun, B.V. Devener, M. Free, H. Lefler, and S. Zheng: Chem. Eng. J., 2017, vol. 52, pp. 299–310.

    Article  Google Scholar 

  38. Y. Xia, Z.Z. Fang, Y. Zhang, H. Lefler, T. Zhang, P. Sun, and M. Free: Mater. Trans., 2017, vol. 58, pp. 355–60.

    Article  Google Scholar 

  39. Y. Xia, Z.Z. Fang, D. Fan, P. Sun, Y. Zhang, and J. Zhu: Int. J. Hydrog. Energy, 2018, vol. 43, pp. 11939-51.

    Article  Google Scholar 

  40. T. H. Okabe, C. Zheng, Y. Taninouchi: Metall. Mater. Trans. B, 2018, vol. 49, pp. 1056–66.

    Article  Google Scholar 

  41. T. H. Okabe, Y. Taninouchi, C. Zheng: Metall. Mater. Trans. B, 2018, vol. 49, pp. 3107–17.

    Article  Google Scholar 

  42. C. Zheng, T. Ouchi, A. Iizuka, Y. Taninouchi, T. H. Okabe: Metall. Mater. Trans. B, 2019, vol. 50, pp. 622–31.

    Article  Google Scholar 

  43. I. Barin: Thermochemical Data of Pure Substance, 3rd Edition (Weinheim, Germany: Wiley-VCH, 1995).

    Book  Google Scholar 

  44. R. Littlewood: J. Electrochem. Soc., 1962, vol. 109, pp. 525–34.

    Article  Google Scholar 

  45. M.W. Chase, NIST-JANAF Thermochemical Tables, 4th ed., American Institute of Physics, 1998.

  46. Y. B. Patrikeev, G. I. Novikov and V. V. Badovskii: Russ. J. Phys. Chem., 1973, vol. 47, p. 284.

    Google Scholar 

  47. C. J. Rosa: Metall. Trans., 1970, vol. 1, pp. 2517–22.

    Google Scholar 

  48. O. Knacke, O. Kubaschewski, and K. Hesselman: Thermochemical Properties of Inorganic Substances, Springer-Verlag, Berlin, 1991.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Japan Society for the Promotion of Science (JSPS) through a Grant-in-Aid for Scientific Research (S) (KAKENHI Grant No. 26220910).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takanari Ouchi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 17, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, C., Ouchi, T., Kong, L. et al. Electrochemical Deoxidation of Titanium in Molten MgCl2–YCl3. Metall Mater Trans B 50, 1652–1661 (2019). https://doi.org/10.1007/s11663-019-01602-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-019-01602-3

Navigation