Skip to main content
Log in

Geosciences in Central South University: A state-of-the-art review

中南大学地球科学进展与前沿

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In recent decades, colleagues working in the Discipline of Geological Resources and Geological Engineering at Central South University made significant progress in theoretic study and application of geophysics, ore deposit and shale gas geology, 3D predictive modeling of concealed resources, and geological engineering. In geophysics, world-class progress was achieved in the development, data processing, equipment, and scientific survey of electromagnetic method in onshore and offshore environments and the tectonic evolution of the Tibetan Plateau. Especially, advanced wide-field electromagnetic exploration method and equipment as a highlight technique won the first prize of National Science and Technology Invention of China. In ore geology, progressive and complex characteristics of most nonferrous ore deposits and the geodynamic relationship between crust-mantle reaction and mineralization in south China were revealed. Progressive metallogenic models of certain typical ore deposits were established based on the study of fluid inclusion and geochemistry. According to characteristics of complex metallogenic system of polygenetic ore deposit, key ore-controlling factors were found and summarized. The investigation on unconventional resources advanced China’s shale gas resource evaluation system. In 3D predictive modelling of metallogenic, a large-scale location prediction model was established for exploration of crisis mines and concealed ore deposits. Our developed 3D predictive modeling techniques for concealed orebodies were widely used to explore deep mineral resources in China. In geological engineering area, the key technologies for deep drilling into complex formations were developed. Especially the drilling fluid and tools were utilized in the fieldwork. The rock and soil mechanics analysis method and anchor technologies were also established and applied to engineering practice.

摘要

中南大学地质资源与地质工程一级学科自主创立了国际领先的地洼学说、伪随机多频电磁场理 论及广域电磁勘探系统,在壳体大地构造学、地电场勘探理论与装置系统、多因复成成矿理论、三维 成矿预测、复杂地层钻井技术等领域形成了具有国际影响的中南学派。2000 年以来,伪随机电磁法勘 探系统和广域电磁法勘探系统在国内外开展了广泛的推广应用,其中“均匀广谱伪随机电磁法及其应 用”于2006 年获得国家技术发明二等奖、“大深度高精度广域电磁勘探技术与装备”于2018 年获得国 家技术发明一等奖。本学科是危机矿山深边部接替资源勘探、地质和地球物理有机结合并直接服务于 国民经济主战场的国家级重点学科。20 年来,本学科以创立的成矿与找矿理论为指导,以自主研制的 国家领先的电磁勘探系统为手段,在国内外矿山和成矿区带的深边部资源勘探中大显身手,在国内外 众多矿山找到了一大批矿产资源,缓解了大批矿山的资源危机,取得了巨大的经济社会效益。本学科 还在复杂地层钻进技术与极端地层钻具研制理论与技术、地质灾害监测与防治、三维可视化定位定量 预测等方面的成果在国内享有盛誉。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ZHDANOV M. Geophysical electromagnetic theory and methods [M]// Methods in Geochemistry and Geophysics Amsterdam: Elsevier, 2009. DOI: https://doi.org/10.1016/S0076-6895(09)70001-0

    Google Scholar 

  2. KAUFMAN A A, ALEKSEEV D, ORISTAGLIO M. Principles of electromagnetic methods in surface geophysics [M]// Methods in Geochemistry and Geophysics. Amsterdam: Elsevier, 2014.

    Google Scholar 

  3. SAINSON S. Electromagnetic seabed logging [M]. Berlin: Springer, 2017. DOI: https://doi.org/10.1007/978-3-319-45355-2.

    Book  Google Scholar 

  4. SHEARD S, RITCHIE T, CHRISTOPHERSON K R, BRAND E. Mining, environmental, petroleum, and engineering industry applications of electromagnetic techniques in geophysics [J]. Survey in Geophysics, 2005, 26(5): 653–669. DOI: https://doi.org/10.1007/s10712-005-1760-0.

    Article  Google Scholar 

  5. SIEMON B, CHRISTIANSEN A V, AUKEN E. A review of helicopter-borne electromagnetic methods for groundwater exploration [J]. Near Surface Geophysics, 2009, 7(5, 6): 629–646. DOI: https://doi.org/10.3997/1873-0604.2009043.

    Article  Google Scholar 

  6. SMITH R. Electromagnetic induction methods in mining geophysics from 2008 to 2012 [J]. Survey in Geophysics, 2014, 35(1): 123–156. DOI: https://doi.org/10.1007/s10712-013-9227-1.

    Article  Google Scholar 

  7. STRACK K. Future directions of electromagnetic methods for hydrocarbon applications [J]. Survey in Geophysics, 2014, 35(1): 157–177. DOI: https://doi.org/10.1007/s10712-013-9237-z.

    Article  MathSciNet  Google Scholar 

  8. STREICH R. Controlled-source electromagnetic approaches for hydrocarbon exploration and monitoring on land [J]. Surveys in Geophysics, 2016, 37(1): 47–80. DOI: https://doi.org/10.1007/s10712-015-9336-0.

    Article  Google Scholar 

  9. AGTERBERG F. Combining indicator patterns in weights of evidence modeling for resource evaluation [J]. Nonrenewable Resources, 1992, 1(1): 39–50. DOI: https://doi.org/10.1007/BF01782111.

    Article  Google Scholar 

  10. CARRANZA E, OWUSE E, HALE M. Mapping of prospectivity and estimation of number of undiscovered prospects for lode gold, southwestern Ashanti Belt, Ghana [J]. Mineralium Deposita, 2009, 44(8): 915–938. DOI: https://doi.org/10.1007/s00126-009-0250-6.

    Article  Google Scholar 

  11. ZUO R G, CARRANZA E. Support vector machine: A tool for mapping mineral prospectivity [J]. Computers & Geosciences, 2011, 37(12): 1967–1975. DOI: https://doi.org/10.1016/j.cageo.2010.09.014.

    Article  Google Scholar 

  12. PORWAL A, GONZALEZ-ALVAREZ I, MARKWITZ V, MCCUAIGB T C, MAMUSEA A. Weights-of-evidence and logistic regression modeling of magmatic nickel sulfide prospectivity in the Yilgarn Craton, Western Australia [J]. Ore Geology Reviews, 2010, 38(3): 184–196. DOI: https://doi.org/10.1016/j.oregeorev.2010.04.002.

    Article  Google Scholar 

  13. JOLY A, PORWAL A, MCCUAIG T C. Exploration targeting for orogenic gold deposits in the Granites-Tanami Orogen: Mineral system analysis, targeting model and prospectivity analysis [J]. Ore Geology Reviews, 2012, 48(10): 349–383. DOI: https://doi.org/10.1016/j.oregeorev.2012.05.004.

    Article  Google Scholar 

  14. MAO X C, CHEN G G. The Xianghualing Sn-deposit: Its mathematical model and three-dimensional quantitative prognostication [J]. Geology and Prospecting, 1988, 24(10): 25–31. (in Chinese)

    Google Scholar 

  15. MAO X C, CHEN G G. Three-dimensional mathematical models of Xianghualing tin deposit and prognosis of blind ore bodies occurring in margins and depths [J]. Journal of Central-South Institute of Mining and Metallurgy, 1991, 22(4): 351–360.

    Google Scholar 

  16. MAO X C, DAI T G, WU X B, ZOU Y H. The stereoscopic quantitative prediction of concealed ore bodies in the deep and marginal parts of crisis mines: A case study of the Dachang tin polymetallic ore deposit in Guangxi [J]. Geology in China, 2009, 36(2): 424–435. (in Chinese)

    Google Scholar 

  17. MAO X C, ZOU Y H, LU X Q, WU X B, DAI T G. Quantitative analysis of geological ore-controlling factors and stereoscopic quantitative prediction of concealed ore bodies [J]. Journal of Central South University of Technology, 2009, 16(6): 987–993. DOI: https://doi.org/10.1007/s11771-009-0164-6.

    Article  Google Scholar 

  18. MAO X C, ZOU Y H, CHEN J, LAI J Q, PENG S L, SHAO Y J, SHU Z M, LU J W, LU C Y. Three-dimensional visual prediction of concealed ore bodies in the deep and marhinal parts of crisis mines: A case study of the Fenghuangshan ore field in Tongling, Anhui, China [J]. Geological Bulletin of China, 2010, 29(2, 3): 401–413. (in Chinese)

    Google Scholar 

  19. MAO X C, REN J, LIU Z K, CHEN J, TANG L, DENG H, BAYLESS R C, YANG B, WANG M J, LIU C M. Three-dimensional prospectivity modeling of the Jiaojia-type gold deposit, Jiaodong Peninsula, Eastern China: A case study of the Dayingezhuang deposit [J]. Journal of Geochemical Exploration, 2019, 203: 27–44. DOI: https://doi.org/10.1016/j.gexplo.2019.04.002.

    Article  Google Scholar 

  20. HE J S. Wide field electromagnetic methods [C]// SEG Technical Program Expanded Abstracts 2015. Society of Exploration Geophysicists, 2015: 1006–1011. DOI: https://doi.org/10.4133/SAGEEP.28-047.

  21. GUO Z W, XUE G Q, LIU J X, WU X. Electromagnetic methods for mineral exploration in China: A review [J]. Ore Geology Reviews, 2020, 118: 103357. DOI: https://doi.org/10.1016/j.oregeorev.2020.103357.

    Article  Google Scholar 

  22. TIKHONOV A N. On determining electric characteristics of the deep layers of the earth’s crust [J]. Dolk Acad Nauk SSSR, 1950, 73: 295–297.

    Google Scholar 

  23. CAGNIARD L. Basic theory of the magneto-telluric method of geophysical prospecting [J]. Geophysics, 1953, 18(3): 605–635. DOI: https://doi.org/10.1190/1.1437915.

    Article  Google Scholar 

  24. BAO G S, HE J S. Dual-frequency and multi-parameter IP instrument and its application research [J]. Journal of Central South University of Technology, 1996, 3: 12–16. DOI: https://doi.org/10.1007/BF02652047.

    Article  Google Scholar 

  25. HE J S. Wide field electromagnetic method and pseudo random signal method [M]. Beijing: Higher Education Press, 2010. (in Chinese)

    Google Scholar 

  26. HE J S. Wide field electromagnetic sounding methods [J]. Journal of Central South University: Science and Technology, 2010, 41(3): 1065–1072. (in Chinese)

    Google Scholar 

  27. HE J S. On the closed addition in a three-element set and the 2nd sequence pseudo-random signal coding [J]. Journal of Central South University: Science and Technology, 2010, 41(2): 632–637. (in Chinese)

    Google Scholar 

  28. GUO Z W, DONG H F, LIU J X. Comparison of marine controlled-source electromagnetic data acquisition systems by a reservoir sensitivity index: Analyzing the effect of water depths [J]. Acta Oceanologica Sinica, 2016, 35(11): 113–119. DOI: https://doi.org/10.1007/s13131-016-0954-2.

    Article  Google Scholar 

  29. TAO C H, LIN J, GUO S Q. Discovery of the first active hydrothermal vent field at the ultraslow spreading southwest Indian ridge [J]. InterRidge News, 2007, 16: 25–26. DOI: https://doi.org/10.1190/sbgf2007-205.

    Google Scholar 

  30. TAO C H, XIONG W, XI Z Z, DENG X M, XU Y X. TEM investigations of South Atlantic Ridge 13.2 S hydrothermal area [J]. Acta Oceanologica Sinica, 2013, 32(12): 68–74. DOI: https://doi.org/10.1007/s13131-013-0392-3.

    Article  Google Scholar 

  31. TAPPONNIER P, PELTZER G, LE DAIN A Y, ARMIJO R, COBBOLD P. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine [J]. Geology, 1982, 10(12): 611–616. DOI: https://doi.org/10.1130/0091-7613(1982)10<611:petian>2.0.co;2.

    Article  Google Scholar 

  32. PELTZER G, TAPPONNIER P. Formation and evolution of strike-slip faults, rifts, and basins during the India-Asia collision: An experimental approach [J]. Journal of Geophysical Research: Solid Earth, 1988, 93(B12): 15085–15117. DOI: https://doi.org/10.1029/jb093ib12p15085.

    Article  Google Scholar 

  33. SUN Y, NIU F L, LIU H F, CHEN Y L, LIU J X. Crustal structure and deformation of the SE Tibetan plateau revealed by receiver function data [J]. Earth and Planetary Science Letters, 2012, 349: 186–197. DOI: https://doi.org/10.1016/j.epsl.2012.07.007.

    Article  Google Scholar 

  34. SUN Y, LIU J X, ZHOU K P, CHEN B, GUO R W. Crustal structure and deformation under the Longmenshan and its surroundings revealed by receiver function data [J]. Physics of the Earth and Planetary Interiors, 2015, 244: 11–22. DOI: https://doi.org/10.1016/j.pepi.2015.04.005.

    Article  Google Scholar 

  35. TANG J T, REN Z Y, ZHOU C, ZHANG L C, YUAN Y, XIAO X. Frequency-domain electromagnetic methods for exploration of the shallow subsurface: A review [J]. Chinese Journal of Geophysics, 2015, 58(8): 2681–2705. DOI: https://doi.org/10.6038/cjg20150807. (in Chinese)

    Google Scholar 

  36. REN Z Y, TANG J T. Finite element modelling of 3-D DC resistivity using locally refined unstructured meshes [J]. Chinese Journal of Geophysics, 2009, 52(10): 2627–2634. DOI: https://doi.org/10.3969/j.issn.0001-5733.2009.10.023. (in Chinese)

    Google Scholar 

  37. YUAN Y. 2.5DC resistivity forward modelling and inversion by finite-infinite element coupling method [D]. Changsha: Central South University 2013. DOI: https://doi.org/10.1111/1365-2478.12298. (in Chinese)

    Google Scholar 

  38. TANG J T, GONG J Z. 3D DC resistivity forward modelling by finite-infinite element coupling method [J]. Chinese Journal of Geophysics, 2010, 53(3): 717–728, DOI: https://doi.org/10.3969/1.issn.0001-5733.2010.03.027. (in Chinese)

    Google Scholar 

  39. REN Z Y, KALSCHEUER T, GREENHALGH S, MAURER H. A goal-oriented adaptive finite-element approach for plane wave 3D electromagnetic modelling [J]. Geophysical Journal International, 2013, 194(2): 700–718. DOI: https://doi.org/10.1093/gji/ggt154.

    Article  Google Scholar 

  40. ZHANG L C, TANG J T, REN Z Y, XIAO X. Forward modelling of 3D CSEM with the coupled finite-infinite element method based on the second field [J]. Chinese Journal of Geophysics, 2017, 60(9): 3655–3666. DOI: https://doi.org/10.6038/cjg20170929.

    Google Scholar 

  41. TANG J T, ZHOU F, REN Z Y, XIAO X, QIU L W, CHEN C J, CHEN H. Three-dimensional forward modelling of the controlled-source electromagnetic problem based on the integral equation method with an unstructured grid [J]. Chinese Journal of Geophysics, 2018, 61(4): 1549–1562. DOI: https://doi.org/10.6038/cjg2018L0303. (in Chinese)

    Google Scholar 

  42. REN Z Y, CHEN C J, TANG J T, ZHOU F, CHEN H, QIU L W, HU S G. A new integral equation approach for 3D magnetotelluric modelling [J]. Chinese Journal of Geophysics, 2017, 60(11): 4506–4515. DOI: https://doi.org/10.6038/cjg20171134. (in Chinese)

    Google Scholar 

  43. LIU R, GUO R W, LIU J X, MA C Y, GUO Z W. A hybrid solver based on IEM and vector FEM for 3D CSEM modelling [J]. Geophysics, 2018, 83(5): 1–42. DOI: https://doi.org/10.1190/geo2017-0502.1.

    Article  Google Scholar 

  44. LIU R, GUO R W, LIU J X, LIU Z. An efficient footprint-guided compact finite element algorithm for 3-D airborne electromagnetic modelling [J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(12): 1809–1813. DOI: https://doi.org/10.1109/LGRS.2019.2913896.

    Article  Google Scholar 

  45. LIU R, GUO R W, LIU J X, WANG J X, LIU Z. 1D EM response modelling with arbitrary source-receiver geometry based on vector potential and its implementation in Matlab [J]. Geophysics, 2020, 85(3). DOI: https://doi.org/10.1190/geo2019-0224.1.

  46. ZHOU Z S, ZHU H L, XIE J, LIU S Q, YANG Y. 3D finite element forward modelling of self-potential based on a new subdivision technology [J]. Journal of Chengdu University of Technology: Science and Technology Edition, 2019, 46(6): 754–761. (in Chinese)

    Google Scholar 

  47. XIE J, CUI Y A, ZHANG L J, GUO Y J, WANG J X, FANIDI M, LIU J X. Numerical modelling of biogeobattery system from microbial degradation of underground organic contaminant [J]. SN Applied Sciences, 2020, 2(2): 208. DOI: https://doi.org/10.1007/s42452-020-2008-9.

    Article  Google Scholar 

  48. XIE J, CUI Y A, ZHANG L J, MA C Y, YANG B, CHEN X L, LIU J X. 3D forward modelling of seepage self-potential using finite-infinite element coupling method [J]. Journal of Environmental and Engineering Geophysics, 2020. (in Press)

  49. TANG J T, REN Z Y, ZHOU C, ZHANG L C, YUAN Y, XIAO X. Frequency-domain electromagnetic methods for exploration of the shallow subsurface: A review [J]. Chinese Journal Geophysics, 2015, 58(8): 2681–2705. DOI: https://doi.org/10.6038/cjg20150807. (in Chinese)

    Google Scholar 

  50. GUO R W, DOSSO S, LIU J X, TONG X Z, JAN D. Non-linearity in Bayesian 1-D magnetotelluric inversion [J]. Geophysical Journal International, 2011, 185: 663–675. DOI: https://doi.org/10.1111/j.1365-246X.2011.04996.x.

    Article  Google Scholar 

  51. GUO R W, DOSSO S, LIU J X, LIU Z M, TONG X Z. Frequency- and spatial-correlated noise on layered magnetotelluric inversion [J]. Geophysical Journal International, 2014, 199: 1205–1213. DOI: https://doi.org/10.1093/gji/ggu329.

    Article  Google Scholar 

  52. XIANG E M, GUO R W, LIU J X, REN Z Y, DONG H. Efficient hierarchical trans-dimensional Bayesian inversion of magnetotelluric data [J]. Geophysical Journal International, 2018, 213(3): 1751–1767. DOI: https://doi.org/10.1093/gji/ggu329.

    Article  Google Scholar 

  53. GUO R W, LIU L M, LIU J X, SUN Y, LIU R. Effect of data error correlations on trans-dimensional MT Bayesian inversions [J]. Earth, Planets and Space, 2019, 71: 134. DOI: https://doi.org/10.1186/s40623-019-1118-3.

    Article  Google Scholar 

  54. TANG J T, ZHOU C, REN Z Y, WANG X Y, XIAO X, LV Q T. Three dimensional magnetotelluric inversion and structural framework of Tongling ore district, Anhui [J]. Acta Geologial Sinica, 2014, 88(4): 598–611. (in Chinese)

    Google Scholar 

  55. REN Z Y, CHEN C J, PAN K J, KALSCHEUER T, MAURER H, TANG J T. Gravity anomalies of arbitrary 3D polyhedral bodies with horizontal and vertical mass contrasts [J]. Surveys in Geophysics, 2017, 38(2): 479–502. DOI: https://doi.org/10.1007/s10712-016-9395-x.

    Article  Google Scholar 

  56. XUE G Q, YAN S, CHEN W Y. A fast topographic correction method for electromagnetic data [J]. Chinese Journal of Geophysics, 2016, 59(12): 4408–4413. DOI: https://doi.org/10.6038/cjg20161202. (in Chinese)

    Google Scholar 

  57. MUSA B, GUO R W, LIU J X. Forward plane-wave electromagnetic model in three dimensions using hybrid finite volume-integral equation scheme [J]. Geophysical Prospecting, 2019, 67: 2213–2226. DOI: https://doi.org/10.1111/1365-2478.12808.

    Article  Google Scholar 

  58. MUSA B, LIU J X, GUO R W. Three-dimensional wideband electromagnetic forward modelling using potential technique [J]. Applied Sciences, 2019, 9(7): 1328. DOI: https://doi.org/10.3390/app9071328.

    Article  Google Scholar 

  59. WANG Y F, LIU J X, LIU R, GUO R W, FENG D S. Frequency-domain magnetotelluric footprint analysis for 3D earths [J]. Journal of Geophysics and Engineering, 2019, 4: 1–9. DOI: https://doi.org/10.1093/jge/gxz085.

    Google Scholar 

  60. TANG J T, LIU Z J, LIU F Y, XIAO X, LI J, ZHANG L C, XIE Y. The denoising of the audio magnetotelluric data set with strong interferences [J]. Chinese Journal of Geophysics, 2015, 58(12): 4636–4647. DOI: https://doi.org/10.6038/cjg20151225. (in Chinese)

    Google Scholar 

  61. CONSTABLE S C, PARKER R L, CONSTABLE C G. Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data [J]. Geophysics, 1987, 52: 289–300. DOI: https://doi.org/10.1190/1.1442303.

    Article  Google Scholar 

  62. GUO Z W, DONG H F, KRISTENSEN Å. Sparse CSEM inversion driven by seismic coherence [J]. Journal of Geophysics and Engineering, 2016, 13(6): 858–867. DOI: https://doi.org/10.1088/1742-2132/13/6/858.

    Article  Google Scholar 

  63. GUO Z W, DONG H F, KRISTENSEN Å. Image-guided regularization of marine electromagnetic inversion [J]. Geophysics, 2017, 82(4): 1–66. DOI: https://doi.org/10.1190/geo2016-0130.1.

    Article  Google Scholar 

  64. GUO Z W, HU L Y, LIU C M, CAO C H, LIU J X, LIU R. Application of the CSAMT method to Pb-Zn mineral deposits: A case study in Jianshui, China [J]. Minerals, 2019, 9(12): 726–738. DOI: https://doi.org/10.3390/min9120726.

    Article  Google Scholar 

  65. XI Z Z, LONG X, ZHOU S, SONG G, HOU H T, WANG L. Opposing coils transient electromagnetic method for shallow subsurface detection [J]. Chinese Journal of Geophysics, 2016, 59(9): 3428–3435. DOI: https://doi.org/10.6038/cjg20160925. (in Chinese)

    Google Scholar 

  66. XI Z Z, LI R X, SONG G, ZHOU S. Electrical structure of sea-floor hydrothermal sulfide deposits [J]. Earth Science, 2016, 42(8): 1395–1401. DOI: https://doi.org/10.3799/dqkx.2016.110. (in Chinese)

    Google Scholar 

  67. YANG X L, LI B, PENG C S, YANG Y. Application of a wide field electromagnetic method to shale gas exploration in south China [J]. Applied Geophysics, 2017, 14(3): 441–448. DOI: https://doi.org/10.1007/s11770-017-0633-x.

    Article  Google Scholar 

  68. XUE G Q. The development of near-source electromagnetic methods in China [J]. Journal of Environmental and Engineering Geophysics, 2018, 23(1): 115–124. DOI: https://doi.org/10.2113/JEEG23.1.115.

    Google Scholar 

  69. HE J S. Combined application of wide-field electromagnetic method and flow field fitting method for high-resolution exploration: A case study of the anjialing No. 1 coal mine [J]. Engineering, 2018, 4(5): 667–675. DOI: https://doi.org/10.1016/j.eng.2018.09.006.

    Google Scholar 

  70. REN Z Y, ZHONG Y Y, CHEN C J, TANG J T, PAN K J. Gravity anomalies of arbitrary 3D polyhedral bodies with horizontal and vertical mass contrasts up to cubic order [J]. Geophysics, 2018, 83(1): G1–G13. DOI: https://doi.org/10.1190/GEO2017-0219.1.

    Article  Google Scholar 

  71. REN Z Y, ZHONG Y Y, CHEN C J, TANG J T, KALSCHEUER T, MAURER H, LI Y. Gravity gradient tensor of arbitrary 3D polyhedral bodies with up to third-order polynomial horizontal and vertical mass contrasts [J]. Surveys in Geophysics, 2018, 39(5): 901–905. DOI: https://doi.org/10.1007/s10712-018-9467-1.

    Article  Google Scholar 

  72. CHEN C J, REN Z Y, PAN K J, TANG J T, KALSCHEUER T, MAURER H, SUN Y, LI Y. Exact solutions of the vertical gravitational anomaly for a polyhedral prism with vertical polynomial density contrast of arbitrary orders [J]. Geophysical Journal International, 2018, 214(3): 2115–2132. DOI: https://doi.org/10.1093/gji/ggy250.

    Article  Google Scholar 

  73. ZHAO G D, CHEN B, CHEN L W, LIU J X, REN Z Y. High-accuracy 3D Fourier forward modeling of gravity field based on the Gauss-FFT technique [J]. Journal of Applied Geophysics, 2018, 150: 294–303. DOI: https://doi.org/10.1016/j.jappgeo.2018.01.002.

    Article  Google Scholar 

  74. ZHAO G D, CHEN B, UIEDA L, LIU J X, KABAN M K, CHEN L W, GUO R W. Efficient 3-D large-scale forward modeling and inversion of gravitational fields in spherical coordinates with application to lunar mascons [J]. Journal of Geophysical Research: Solid Earth, 2019, 124(4): 4157–4173. DOI: https://doi.org/10.1029/2019JB017691.

    Google Scholar 

  75. ZHONG Y Y, REN Z Y, CHEN C J, CHEN H, YANG Z, GUO Z W. A new method for gravity modeling using tesseroids and 2D Gauss-Legendre quadrature rule [J]. Journal of Applied Geophysics, 2019, 164: 53–64. DOI: https://doi.org/10.1016/j.jappgeo.2019.03.003.

    Article  Google Scholar 

  76. CHEN B, LIU J X, KABAN M K, SUN Y, CHEN C, DU J S. Elastic thickness, mechanical anisotropy and deformation of the southeastern tibetan plateau [J]. Tectonophysics, 2014, 637: 45–56. DOI: https://doi.org/10.1016/j.tecto.2014.09.007.

    Article  Google Scholar 

  77. CHEN B, LIU J X, CHEN C, DU J S, SUN Y. Elastic thickness of the Himalayan-Tibetan orogen estimated from the fan wavelet coherence method, and its implications for lithospheric structure [J]. Earth and Planetary Science Letters, 2015, 409: 1–14. DOI: https://doi.org/10.1016/j.epsl.2014.10.039.

    Article  Google Scholar 

  78. CHEN B, KABAN M, EL KHREPY S, AL-ARIFI N. Effective elastic thickness of the Arabian plate: Weak shield versus strong platform [J]. Geophysical Research Letters, 2015, 42(9): 3298–3304. DOI: https://doi.org/10.1002/2015GL063725.

    Article  Google Scholar 

  79. KABAN M, CHEN B, TESAURO M, PETRUNIN A G, EL KHREPY S, AL-ARIFI N. Reconsidering effective elastic thickness estimates by incorporating the effect of sediments: A case study for Europe [J]. Geophysical Research Letters, 2018, 45(18): 9523–9532. DOI: https://doi.org/10.1029/2018GL079732.

    Article  Google Scholar 

  80. CHEN B, HAEGER C, KABAN M, PETRUNIN A. Variations of the effective elastic thickness reveal tectonic fragmentation of the Antarctic lithosphere [J]. Tectonophysics, 2018, 746: 412–424. DOI: https://doi.org/10.1016/j.tecto.2017.06.012.

    Article  Google Scholar 

  81. CUI Y A, ZHU X X, CHEN Z X, LIU J X. Fast 3D apparent resistivity inversion for contaminant monitoring data [J]. The Chinese Journal of Nonferrous Metals, 2015, 25(8): 2205–2211. (in Chinese)

    Google Scholar 

  82. ZHU X X, CUI Y A, LI X Y, TONG T G, JI T X. Inversion of self-potential anomalies based on particle swarm optimization [J]. Journal of Central South University: Science and Technology, 2015, 46(2): 579–585. (in Chinese)

    Google Scholar 

  83. CUI Y A, ZHU X X, CHEN Z X, LIU J W, LIU J X. Performance evaluation for intelligent optimization algorithms in self-potential data inversion [J]. Journal of Central South University, 2016, 23: 2659–2668. DOI: https://doi.org/10.1007/s11771-016-3327-2.

    Article  Google Scholar 

  84. ZHU X X, CUI Y A, CHEN Z X. Inversion for self-potential sources based on the least square regularization [J]. Progress in Geophysics, 2016, 31(5): 2313–2318. (in Chinese)

    Google Scholar 

  85. CUI Y A, ZHU X X, WEI W S, LIU J X, TONG T G. Dynamic imaging of metallic contamination plume based on self-potential data [J]. Trans Nonferrous Met Soc China, 2017, 27: 1822–1830. DOI: https://doi.org/10.1016/S1003-6326(17)60205-X.

    Article  Google Scholar 

  86. CUI Y A, LIU L B, ZHU X X. Unscented Kalman filter assimilation of time-lapse self-potential data for monitoring solute transport [J]. Journal of Geophysics and Engineering, 2017, 14(4): 920–929. DOI: https://doi.org/10.1088/1742-2140/aa7306.

    Article  Google Scholar 

  87. YANG B, CUI Y A, XIE J, ZHANG L J, CHEN X L, LIU J X. Inversion of self-potential data by using particle filter [J]. Progress in Geophysics,2019. (in Press) (in Chinese)

  88. HE J S. Theory and technology of wide field electromagnetic method [J]. The Chinese Journal of Nonferrous Metals, 2019, 29(9): 1809–1816. (in Chinese)

    Google Scholar 

  89. PEI J, JIANG Q Y. Wide field electromagnetic receiver acquisition design based on AD7762 [J]. Progress in Geophysics, 2010, 25(3): 1110–1114. (in Chinese)

    Google Scholar 

  90. ZHOU S, SONG G, HUANG L, XI Z Z, HOU H T, CHEN X P, QI Q X. Marine towed transient electromagnetic system working in deep-sea below 6000 meters and its application [J]. Chinese Journal of Geophysics, 2017, 60(11): 42944301. DOI: https://doi.org/10.6038/cjg20171117. (in Chinese)

    Google Scholar 

  91. DU R J, LAI J Q, OU Q, XIAO W Z, LIU Y, LIU C Y, LI S L. Petrogenesis of the Jinjiling diabasic dikes in southern Hunan and its dynamic significance [J]. Acta Geologica Sinica, 2019, 93(8): 1998–2019. (in Chinese)

    Google Scholar 

  92. LIU L L, ZHANG S H, CHENG Y M, LIANG L. Advanced reliability analysis of slopes in spatially variable soils using multivariate adaptive regression splines [J]. Geoscience Frontiers, 2019, 10(2): 671–682. DOI: https://doi.org/10.1016/j.gsf.2018.03.013.

    Article  Google Scholar 

  93. LIU L L, CHENG Y M, PAN Q J, DIAS D. Incorporating stratigraphic boundary uncertainty into reliability analysis of slopes in spatially variable soils using one-dimensional conditional Markov chain model [J]. Computers and Geotechnics, 2020, 118: 103321. DOI: https://doi.org/10.1016/j.compgeo.2019.103321.

    Article  Google Scholar 

  94. LIU Q Q, LI B, SHAO Y J, LU A H, LAI J Q, LI Y F, LUO Z Z. Molybdenum mineralization related to the Yangtze’s lower crust and differentiation in the Dabie Orogen: Evidence from the geochemical features of the Yaochong porphyry Mo deposit [J]. Lithos, 2017, 282: 111–127. DOI: https://doi.org/10.1016/j.lithos.2017.03.009.

    Article  Google Scholar 

  95. ZENG R Y, LAI J Q, MAO X C, LI B, ZHANG J D, BAYLESS R, YANG L Z. Paleoproterozoic multiple tectonothermal events in the longshoushan area, western north China craton and their geological implication: Evidence from geochemistry, zircon U-Pb geochronology and Hf isotopes [J]. Minerals, 2018, 8(9): 361. DOI: https://doi.org/10.3390/min8090361.

    Article  Google Scholar 

  96. XIAO W Q, LAI J Q, DICK J M, MAO X C, CHEN Y, OU Q, XIE F Q, ZENG R Y. Tectonic affinity and evolution of the A lxa B lock during the N eoproterozoic: C onstraints from zircon U-Pb dating, trace elements, and Hf isotopic composition [J]. Geological Journal, 2019, 54(6): 3700–3719. DOI: https://doi.org/10.1002/gj.3343.

    Article  Google Scholar 

  97. YUAN L L, ZHANG X H, YANG Z L. Early Cretaceous gabbro-granite complex from central Inner Mongolia: Insights into initial rifting and crust-mantle interaction in the northern China-Mongolia basin-range tract [J]. Lithos, 2019, 324: 859–876. DOI: https://doi.org/10.1016/j.lithos.2018.12.010.

    Article  Google Scholar 

  98. CHEN G D, PENG S L, DAI T G, LIU J S. Geotectonics and mineralogy of copper-polymetallic shell in Yunnan [M]. Changsha: Central South University Press, 2004. (in Chinese)

    Google Scholar 

  99. PENG S L, FAN J C, SHAO Y J, MAO X C, LAI J Q, CHEN J, WANG Y, WANG X J, ZHANG J D. New breakthrough in key technologies of location prediction about deep concealed ore bodies of mine [J]. The Chinese Journal of Nonferrous Metals, 2012, 22(3): 844–854. (in Chinese)

    Google Scholar 

  100. LAI J Q, CHI G. CO2-rich fluid inclusions with chalcopyrite daughter mineral from the Fenghuangshan Cu-Fe-Au deposit, China: Implications for metal transport in vapor [J]. Mineralium Deposita, 2007, 42(3): 293–299. DOI: https://doi.org/10.1007/s00126-006-0109-z.

    Article  Google Scholar 

  101. LAI J Q, CHI G, PENG S L, SHAO Y J, YANG B. Fluid evolution in the formation of the Fenghuangshan Cu-Fe-Au deposit, Tongling, Anhui, China [J]. Economic Geology, 2007, 102(5): 949–970. DOI: https://doi.org/10.2113/gsecongeo.102.5.949.

    Article  Google Scholar 

  102. PENG S L, LAI J Q, MAO X C, SHAO Y J, ANG B, YANG M, XI Z Z, ZOU Y H, CHEN J, WANG Y, WANG X J, MAO Z L, SU Z M, WANG J Q, LV J W, LV C Y. Research on large-scale positioning and quantitative prediction technology for deep hidden ores in crisis mines [M]. Beijing: Geological Publishing House 2012. (in Chinese)

    Google Scholar 

  103. YANG B, LAI J Q, PENG S L, SHU Z M, LIU G. Multiple induction mechanism in the progressive mineralization of the TongmaTianmashan deposit [J]. Mineral Deposits, 2012, 31(2): 383–384. (in Chinese)

    Google Scholar 

  104. YANG B, LAI J Q, PENG S L, XI Z Z, WANG X J, ZHANG J D, CHEN Y, KAN J, LIANG Q Q, LIU G Y, YANG Q Q, ZHU T, WANG H, TONG X, WU J D. Dynamic mineralization and prospecting [M]. Beijing: Geological Publishing House 2014. (in Chinese)

    Google Scholar 

  105. YANG B, GAO X, PENG S L, XI Z Z, ZHANG D, LIU G Y, DOU Y. Oriental prognosis of deep orebodies in Dayingezhuang—Houcang mining area of Zhaoping fault zone [J]. Chinese Journal of Nonferrous Metals, 2012, 22: 872–879. (in Chinese)

    Google Scholar 

  106. ZHANG S G, YAO C X, YANG H Z, YUAN G Q. Research on key metallogenic control system and metallogenic prediction of Fankou lead-zinc sulfide deposit in northern Guangdong [M]. Changsha: Central South University Press 2013. (in Chinese)

    Google Scholar 

  107. CHENG Y S. Ore-forming regularity and deep prospecting of super-large tungsten polymetallic deposit in Shizhuyuan mine concentration area [M]. Beijing: Geology Publishing House 2016. (in Chinese)

    Google Scholar 

  108. LIU L L, DENG Z P, ZHANG S H, CHENG Y M. Simplified framework for system reliability analysis of slopes in spatially variable soils [J]. Engineering Geology, 2018, 239: 330–343.DOI: https://doi.org/10.1016/j.enggeo.2018.04.009.

    Article  Google Scholar 

  109. LIU L L, ZHANG S H, CHENG Y M, LIANG L L. Advanced reliability analysis of slopes in spatially variable soils using multivariate adaptive regression splines [J]. Geoscience Frontiers, 2019, 10(2): 671–682. DOI: https://doi.org/10.1016/j.gsf.2018.03.013.

    Article  Google Scholar 

  110. ZHANG Y, SHAO Y J, CHEN H Y, LIU Z F, LI D F. A hydrothermal origin for the large Xinqiao Cu-S-Fe deposit, Eastern China: Evidence from sulfide geochemistry and sulfur isotopes [J]. Ore Geology Reviews, 2017, 88: 534–549. DOI: https://doi.org/10.1016/j.oregeorev.2016.08.002.

    Article  Google Scholar 

  111. ZHANG Y, SHAO Y J, LIU Q Q, CHEN H Y, QUAN W, SUN A X. Jurassic magmatism and metallogeny in the eastern Qin-Hang Metallogenic Belt, SE China: An example from the Yongping Cu deposit [J]. Journal of Geochemical Exploration, 2018, 186: 281–297. DOI: https://doi.org/10.1016/j.gexplo.2018.01.006.

    Article  Google Scholar 

  112. ZHANG Y, SHAO Y J, ZHANG R, LI D F, LIU Z F, CHEN H Y. Dating ore deposit using garnet U-Pb deochronology: Example from the Xinqiao Cu-S-Fe-Au deposit, Eastern China [J]. Minerals, 2018, 8(1): 31. DOI: https://doi.org/10.3390/min8010031.

    Article  Google Scholar 

  113. ZENG R Y, LAI J Q, MAO X C, AI Q X, YUE B. Relationship between two kinds of parental magma of main orebodies during magma evolution in Jinchuan Cu-Ni (PGE) sulfide deposit, China [J]. Chinese Journal of Nonferrous Metals, 2015, 25: 761–775.

    Google Scholar 

  114. ZENG R Y, LAI J Q, MAO X C, LI B, JU P J, TAO S L. Geochemistry, zircon U-Pb dating and Hf isotopies composition of Paleozoic granitoids in Jinchuan, NW China: Constraints on their petrogenesis, source characteristics and tectonic implication [J]. Journal of Asian Earth Sciences, 2016, 121: 20–33. DOI: https://doi.org/10.1016/j.jseaes.2016.02.009.

    Article  Google Scholar 

  115. ZENG R Y. The tectono-magma events and their geodynamic implications in the Longshoushan area, Gansu [D]. Changsha: Central South University 2017. (in Chinese)

    Google Scholar 

  116. HE Q J, LAI J Q, MAO X C, XIAO W Z, AI Q X, LIU Y. Tectonic stress field and tectonic evolution in Jinchuan mining district, Gansu province [J]. Contribution to Geology and Mineral Resources Research, 2019, 22(2): 265–273. (in Chinese)

    Google Scholar 

  117. ZHANG Y. Genesis of the garnet-bearing leucogranite and its indicative significance for mineralization in the southern margin of Mufushan, northeast of Hunan [D]. Changsha: Central South University 2019. (in Chinese)

    Google Scholar 

  118. LI H, KONG H, ZHOU Z K, TINDEL T, TANG Y, WU Q H, XI X S. Genesis of the Banxi Sb deposit, South China: Constraints from wall-rock geochemistry, fluid inclusion microthermometry, Rb-Sr geochronology, and H-O-S isotopes [J]. Ore Geology Reviews, 2019, 115: 103162. DOI: https://doi.org/10.1016/j.oregeorev.2019.103162.

    Article  Google Scholar 

  119. LI H, ZHOU Z K, ALGEO T J, WU J H, JIANG W C. Geochronology and geochemistry of tuffaceous rocks from the Banxi Group: Implications for Neoproterozoic tectonic evolution of the southeastern Yangtze Block, South China [J]. Journal of Asian Earth Sciences, 2019, 177: 152–176. DOI: https://doi.org/10.1016/j.jseaes.2019.03.022.

    Article  Google Scholar 

  120. LI H, ZHOU Z K, EVANS N, KONG H, WU Q H, XI X S. Fluid-zircon interaction during low-temperature hydrothermal processes: Implications for the genesis of the Banxi antimony deposit, South China [J]. Ore Geology Reviews, 2019, 114: 103137. DOI: https://doi.org/10.1016/j.oregeorev.2019.103137.

    Article  Google Scholar 

  121. LIU Z K, MAO X C, DENG H, LI B, ZHANG S G, LAI J Q, BAYLESS R, PAN M, LI L J, SHANG Q H. Hydrothermal processes at the Axi epithermal Au deposit, western Tianshan: Insights from geochemical effects of alteration, mineralization and trace elements in pyrite [J]. Ore Geology Reviews, 2018, 102: 368–385. DOI: https://doi.org/10.1016/j.oregeorev.2018.09.009.

    Article  Google Scholar 

  122. GU X P, XIE X D, WU X B, ZHU G C, LAI J Q, HOSHINO K, HUANG J W. Ferrisepiolite: A new mineral from Saishitang copper skarn deposit in Xinghai County, Qinghai Province, China [J]. European Journal of Mineralogy, 2013, 25(2): 177–186. DOI: https://doi.org/10.1127/0935-1221/2013/0025-2262.

    Article  Google Scholar 

  123. QIAN L H, LAI J Q, HU L F, CAO R, TAO S L, YOU B. Geochronology and geochemistry of the granites from the Longtoushan hydrothermal gold deposit in the Dayaoshan area, Guangxi: Implication for petrogenesis and mineralization [J]. Journal of Earth Science, 2019, 30(2): 309–322. DOI: https://doi.org/10.1007/s12583-018-1204-7.

    Article  Google Scholar 

  124. QIAN L H, LAI J Q, ZHANG S G, HU L F, CAO R, TAO S L. Chemical and boron isotopic compositions of tourmaline in the Longtoushan hydrothermal gold deposit, Guangxi, China: Implications for gold mineralization [J]. Acta Geochimica, 2019, 38(2): 277–291. DOI: https://doi.org/10.1007/s11631-018-0292-5.

    Article  Google Scholar 

  125. XIONG Y Q, SHAO Y J, ZHOU H D, WU Q, LIU J P, WEI H T, ZHAO R C, CAO J Y. Ore-forming mechanism of quartz-vein-type W-Sn deposits of the Xitian district in SE China: Implications from the trace element analysis of wolframite and investigation of fluid inclusions [J]. Ore Geology Reviews, 2017, 83: 152–173. DOI: https://doi.org/10.1016/j.oregeorev.2016.12.007.

    Article  Google Scholar 

  126. YI L W, GU X P, LU A H, LI X Y, ZHANG D X, WANG Z L, LIU J P, LI S, SHU Z X, YU C, ZUO H Y, SHEN C. Atacamite and nantokite in Kaerqueka copper deposit of Qimantag area: Evidence for Cenozoic climate evolution of the Qaidam Basin [J]. Journal of Earth Science, 2017, 28(3): 492–499. DOI: https://doi.org/10.1007/s12583-017-0548-8.

    Article  Google Scholar 

  127. CAO J A, YANG X Y, DU J G, WU Q H, KONG H, LI H, WAN Q, XI X S, GONG Y S, ZHAO H R. Formation and geodynamic implication of the Early Yanshanian granites associated with W-Sn mineralization in the Nanling Range, South China: An overview [J]. International Geology Review, 2018, 60(11–14): 1744–1771. DOI: https://doi.org/10.1080/00206814.2018.1466370.

    Google Scholar 

  128. CHEN J F, SHENG D, SHAO Y J, ZHANG J X, LIU Z F, WEI H T, YANG Q D, LUO X Y, DU Y. Silurian S-type granite-related W-(Mo) mineralization in the Nanling Range, South China: A case study of the Pingtan W-(Mo) deposit [J]. Ore Geology Reviews, 2019, 107: 186–200. DOI: https://doi.org/10.1016/j.oregeorev.2019.02.020.

    Article  Google Scholar 

  129. QUAN T J, XI X S, KONG H, WU Q H, CHEN Z F. Yanshanian triple junction tectonic pattern and metallogenesis in southern Hunan, China [J]. The Chinese Journal of Nonferrous Metals 2013, 23(9): 2613–2620. DOI: https://doi.org/1004-0609(2013)09-2613-08. (in Chinese)

    Google Scholar 

  130. YAO C X, ZHANG S G, WANG C. Key Ore-controlling factors and metallogenic system of lead-zinc sulfide deposits in northern margin of Quren basin [J]. The Chinese Journal of Nonferrous Metals, 2013, 23(9): 2557–2566.

    Google Scholar 

  131. LIU B, WU Q H, LI H, EVANS N J, WU J H, CAO J Y, JIANG J B. Fault-fluid evolution in the Xitian W-Sn ore field (South China): Constraints from scheelite texture and composition [J]. Ore Geology Reviews, 2019, 114: 103140. DOI: https://doi.org/10.1016/j.oregeorev.2019.103140.

    Article  Google Scholar 

  132. YAO C X, ZHANG S G, WANG C. Geochemistry of Fankou- type MVT lead-zinc sulphide deposit in northern margin of Quren basin, Guangdong Province, China [J]. The Chinese Journal of Nonferrous Metals, 2013, 23(12): 3518–3528. (in Chinese)

    Google Scholar 

  133. MAO Z L, LAI J Q, PENG S L. Geochemical anomaly structure of south mining district of Fenghuangshan copper mine [J]. Chinese Journal of Geochemistry, 2012, 31(4): 408–413. DOI: https://doi.org/10.1007/s11631-012-0591-1.

    Article  Google Scholar 

  134. ZHANG J D, PENG S L, YANG B, LIU M, WANG L. Interpretation of unusual remote sensing information and analysis of ore-searching prospecting in the Gejiu mining district [J]. Geology and Prospecting, 2008, 44(2): 87–91. (in Chinese)

    Google Scholar 

  135. PENG S L, LIU L M, LAI J Q. Research on exploration technology and demonstration of replacement resources in large-scale mines [M]. Beijing: Geological Publishing House 2004. (in Chinese)

    Google Scholar 

  136. DAI T G. Three-floor model of ore-controlling structures and its significance in Xikuangshan Sb deposit [J]. Journal of Central South University of Technology, 1999, 30(4): 342–344. (in Chinese)

    Google Scholar 

  137. LAI J Q, JU P J, MAO Y, AN J H, WANG X J. Ore-forming fluid characteristics of the Saishitang Cu-polymetallic deposit in Qinghai Province, China [J]. Acta Geologica Sinica: English Edition, 2015, 89(2): 485–504. DOI: https://doi.org/10.1111/1755-6724.12442.

    Article  Google Scholar 

  138. LAI J Q, WANG X J, MAO Y. Metallogenic conditions and laws of Saishitang copper polymetallic deposit in Qinghai [M]. Beijing: Geology Publishing House 2016: 1–153. (in Chinese)

    Google Scholar 

  139. WANG Z L, XU D R, ZHANG Z C, ZOU F H, WANG L, YU L L, HU M Y. Mineralogy and trace element geochemistry of the Co-and Cu-bearing sulfides from the Shilu Fe-Co-Cu ore district in Hainan Province of South China [J]. Journal of Asian Earth Sciences, 2015, 113: 980–997. DOI: https://doi.org/10.1016/j.jseaes.2015.08.019.

    Article  Google Scholar 

  140. WANG Z L, XU D R, CHI G, SHAO Y J, LAI J Q, DENG T, GUO F, WANG Z, DONG G J, NING J T, ZUO G T. Mineralogical and isotopic constraints on the genesis of the Jingchong Co-Cu polymetallic ore deposit in northeastern Hunan Province, South China [J]. Ore Geology Reviews, 2017, 88: 638–654. DOI: https://doi.org/10.1016/j.oregeorev.2017.02.011.

    Article  Google Scholar 

  141. XU D R, WANG Z L, NIE F J, ZOU S H, DENG T, LI Z H. Cobalt resources in China: Current research status and key scientific issues [J]. Bulletin of National Natural Science Foundation of China, 2019(2): 125–132. (in Chinese)

  142. TAN J Q, HORSFIELD B, MAHLSTEDT N, ZHANG J, DI PRIMIO R, VU T A T, BOREHAM C J, GRAAS G, TOCHER B A. Physical properties of petroleum formed during maturation of Lower Cambrian shale in the upper Yangtze Platform, South China, as inferred from phase kinetics modeling [J]. Marine and Petroleum Geology, 2013, 48: 47–56. DOI: https://doi.org/10.1016/j.marpetgeo.2013.07.013.

    Article  Google Scholar 

  143. TAN J, HORSFIELD B, MAHLSTEDT N, ZHANG J C, BOREHAM C J, HIPPLER D, van GRAAS G, TOCHER B A. Natural gas potential of Neoproterozoic and lower Palaeozoic marine shales in the Upper Yangtze Platform, South China: Geological and organic geochemical characterization [J]. International Geology Review, 2015, 57(3): 305–326. DOI: https://doi.org/10.1016/j.marpetgeo.2013.07.013.

    Article  Google Scholar 

  144. TAN J Q, WENIGER P, KROOSS B, MERKEL A, HORSFIELD B, ZHANG J C. Shale gas potential of the major marine shale formations in the Upper Yangtze Platform, South China, Part II: Methane sorption capacity [J]. Fuel, 2014, 129: 204–218. DOI: https://doi.org/10.1016/j.fuel.2014.03.064.

    Article  Google Scholar 

  145. TAN J Q, HORSFIELD B, FINK R, KROOSS B, SCHULZ H, RYBACK E, ZHANG J C, BOREHAM C J, HIPPLER D, VAN GRAAS G, TOCHER B A. Shale gas potential of the major marine shale formations in the Upper Yangtze Platform, south China, Part III: Mineralogical, lithofacial, petrophysical, and rock mechanical properties [J]. Energy & Fuels, 2014, 28(4): 2322–2342. DOI: https://doi.org/10.1021/ef4022703.

    Article  Google Scholar 

  146. LYU Q, LONG X P, RANJITH P G, TAN J Q, KANG Y. Experimental investigation on the mechanical behaviours of a low-clay shale under water-based fluids [J]. Engineering Geology, 2018, 233: 124–138. DOI: https://doi.org/10.1016/j.enggeo.2017.12.002.

    Article  Google Scholar 

  147. LYU Q, TAN J Q, DICK J M, LIU Q, GAMAGE R P, LI L, WANG Z H, HU C E. Stress-strain modeling and brittleness variations of low-clay shales with CO2/CO2-water imbibition [J]. Rock Mechanics and Rock Engineering, 2019, 52(7): 2039–2052. DOI: https://doi.org/10.1007/s00603-018-1687-7.

    Article  Google Scholar 

  148. TAN J Q, WANG Z H, WANG W H, JASON H, GUO J H, WANG X K. Depositional environment and hydrothermal controls on organic matter enrichment in the Lower Cambrian Niutitang Shale, South China [J]. AAPG Bulletin, 2020. (in Press)

  149. HU W X, KANG X, CAO J, WANG X J, FU B, WU H G. Thermochemical oxidation of methane induced by high-valence metal oxides in a sedimentary basin [J]. Nature Communications, 2018, 9(1): 1–11. DOI: https://doi.org/10.1038/s41467-018-07267-x.

    Article  Google Scholar 

  150. KANG X, HU W X, CAO J, JIN J, WU H G, ZHAO Y, WANG J. Selective dissolution of alkali feldspars and its effect on Lower Triassic sandy conglomerate reservoirs in the Junggar Basin, northwestern China [J]. Geological Journal, 2018, 53(2): 475–499. DOI: https://doi.org/10.1002/gj.2905.

    Article  Google Scholar 

  151. KANG X, HU W X, CAO J, WU H G, XIANG B L, WANG J. Controls on reservoir quality in fan-deltaic conglomerates: Insight from the Lower Triassic Baikouquan Formation, Junggar Basin, China [J]. Marine and Petroleum Geology, 2019, 103: 55–75. DOI: https://doi.org/10.1016/j.marpetgeo.2019.02.004.

    Article  Google Scholar 

  152. WANG W, HU W X, CHEN Q, JIA D, CHEN X. Temporal and spatial distribution of ordovician-silurian boundary black graptolitic shales on the lower Yangtze platform [J]. Palaeoworld, 2017, 26(3): 444–455. DOI: https://doi.org/10.1002/gj.2905.

    Article  Google Scholar 

  153. CHEN X, CHEN Q, ZHEN Y Y, WANG H Y, ZHANG L N, ZHANG J P, WANG W H, XIAO Z H. Circumjacent distribution pattern of the Lungmachian graptolitic black shale (early Silurian) on the Yichang Uplift and its peripheral region [J]. Science China Earth Sciences, 2018, 61(9): 1195–1203. DOI: https://doi.org/10.1007/s11430-017-9222-x.

    Article  Google Scholar 

  154. TAN J Q, HU R N, WANG W H, DICK J. Palynological analysis of the late Ordovician-Early Silurian black shales in south China provides new insights for the investigation of pore systems in shale gas reservoirs [J]. Marine and Petroleum Geology, 2019: 104145. DOI: https://doi.org/10.1016/j.marpetgeo.2019.104145.

  155. LI L, TAN J Q, WOOD D A, ZHAO Z G, DIRK B, LYU Q, SHU B, CHEN H C. A review of the current status of induced seismicity monitoring for hydraulic fracturing in unconventional tight oil and gas reservoirs [J]. Fuel, 2019, 242: 195–210. DOI: https://doi.org/10.1016/j.fuel.2019.01.026.

    Article  Google Scholar 

  156. LI L, TAN J Q, SCHWARZ B, STANEK F, POIATA N, SHI P D, LEON D, LEO E, DIRK G. Recent advances and challenges of waveform-based seismic location methods at multiple scales [J]. Reviews of Geophysics, 2020, 58(1): e2019RG000667. DOI: https://doi.org/10.1029/2019RG000667.

    Article  Google Scholar 

  157. AGTERBERG F P. Automatic contouring of geological maps to detect target areas for mineral exploration [J]. Journal of the International Association for Mathematical Geology, 1974, 6(4): 373–395. DOI: https://doi.org/10.1007/BF02082358.

    Article  Google Scholar 

  158. MAO X C, CHEN G G. Stero-quantitative prediction of a hidden tin ore deposit in the Xianchualing ore field [J]. Journal of Guilin Institute of Technology, 1988, 8(1): 17–24.

    Google Scholar 

  159. ZOU Y H, MAO X C. Establishment and application of geological survey database [J]. Journal of Central South University of Technology: Natural Science, 2004, 35(3): 463–467. (in Chinese)

    Google Scholar 

  160. MAO X C, DAI T G. Preliminary study on geometric modeling of geometric body [J]. Transactions of Nonferrous Metals Society of China, 1998, 8(2): 349–352.

    Google Scholar 

  161. DAI T G, MAO X C. Computer system for geometric modeling of geologic bodies and applications [J]. Transaction of Nonferous Metals Society of China, 1998, 8(4): 710–715.

    Google Scholar 

  162. DENG H, ZHANG L Q, MAO X C, MA J T, KANG Z Z, PENG J H, RUI X P, LIU L. Fast and dynamic generation of linear octrees for geological bodies under hardware acceleration [J]. Science in China Series D: Earth Sciences, 2010, 53(1): 113–119. DOI: https://doi.org/10.1007/s11430-009-0202-0.

    Article  Google Scholar 

  163. LIU S N, MAO X C. The principle and application of geological-geometric method in three-dimension prognosis [J]. Journal of Central-South Institute of Mining and Metallurgy, 1991, 22(1): 351–360.

    Google Scholar 

  164. MAO X C, TANG Y H, DENG H. Three-dimensional morphological analysis method for geologic bodies and its application [J]. Journal of Central South University: Science and Technology, 2012, 43(2): 588–595. (in Chinese)

    Google Scholar 

  165. MAO X C, ZHANG B, DENG H, ZHOU Y H, CHEN J. Three-dimensional morphological analysis method for geologic bodies and its parallel implementation [J]. Computers & Geosciences, 2016, 96: 11–22. DOI: https://doi.org/10.1016/j.cageo.2016.07.004.

    Article  Google Scholar 

  166. MAO X C, TANG Y H, LAI J, ZOU Y H, CHEN J, PENG S L, SHAO Y J. Three-dimensional structure of metallogenic geologic bodies in the Fenghuangshan ore field and ore-controlling geological factors [J]. Acta Geologica Sinica, 2011, 85(9): 1507–1518. (in Chinese)

    Google Scholar 

  167. WANG L F, WU X B, ZHANG B Y, LI X F, HUANG A S, MENG F, DAI P Y. Recognition of significant surface soil geochemical anomalies via weighted 3D shortest-distance field of subsurface orebodies: A case study in the Hongtoushan copper mine, NE China [J]. Natural Resources Research, 2019, 28(3): 587–607. DOI: https://doi.org/10.1007/s11053-018-9410-7.

    Article  Google Scholar 

  168. MAO X C, REN J, LIU Z K, CHEN J, TANG L, DENG H. Three-dimensional prospectivity modeling of the Jiaojia-type gold deposit, Jiaodong Peninsula, Eastern China: A case study of the Dayingezhuang deposit [J]. Journal of Geochemical Exploration, 2019, 203: 27–44. DOI: https://doi.org/10.1016/j.gexplo.2019.04.002.

    Article  Google Scholar 

  169. MAO X C, HU C, ZHOU S G, ZHANG B Y, WANG F Y, ZENG W B. Field analysis of metallogenic information and its application [J]. Journal of Central South University of Technology, 2011, 18(1): 196–207. DOI: https://doi.org/10.1007/s11771-011-0680-z.

    Article  Google Scholar 

  170. ZOU Y H, LIU Y, DAI T, MAO X C, LEI Y B, LAI J Q. Finite difference modeling of metallogenic processes in the Hutouya Pb-Zn deposit, Qinghai, China: Implications for hydrothermal mineralization [J]. Ore Geology Reviews, 2017, 91: 463–476. DOI: https://doi.org/10.1016/j.oregeorev.2017.09.008.

    Article  Google Scholar 

  171. ZOU Y H, LIU Y, PAN Y, YANG K D, DAI T G, MAO X C, LAI J Q, TIAN H L. Numerical simulation of hydrothermal mineralization associated with simplified chemical reactions in Kaerqueka polymetallic deposit, Qinghai, China [J]. Transactions of Nonferrous Metals Society of China, 2019, 29(1): 165–177. DOI: https://doi.org/10.1016/S1003-6326(18)64925-8.

    Article  Google Scholar 

  172. FAN J C, MAO X C, ZOU P J, CAO F, ZHANG B Y. Integration method for metallogenic information under condition of metallogenic information asymmetry [J]. Transactions of Nonferrous Metals Society of China, 2012, 22(3): 940–947. (in Chinese)

    Google Scholar 

  173. NIU L X, SUN P H. Experimental study on the plugging of acrylic acid high water absorbing resin in deep drilling [J]. Geological Science and Technology Information, 2017(1): 213–217. DOI: https://doi.org/10.19509/j.cnki.dzkq.2017.0126. (in Chinese)

  174. SUN P H, MO D Q, ARIARATNAM S T, CAO H, ZHANG P F. Laboratory study of fluid properties owing to cutting intrusions during horizontal directional drilling [J]. Underground Space, 2020, 5(1): 20–29. DOI: https://doi.org/10.1016/j.undsp.2018.09.004.

    Article  Google Scholar 

  175. SUN P H, ZHAO B K, CAO H, WANG J Y, MO D Q, ZHANG S H, CHEN Y G. Lab study on the effect of cation exchange capacity on slurry performance in slurry shields [J]. Advances in Civil Engineering, 2018: 2942576. DOI: https://doi.org/10.1155/2018/2942576.

  176. SUN P H, AN C D, CAO H. Horizontal borehole displacement analysis based on drilling fluid pressure [J]. Chinese Journal of Underground Space and Engineering, 2011, 7(6): 1168–1173. DOI: https://doi.org/10.1016/j.cageo.2010.07.006.

    Google Scholar 

  177. SUN P H, TIAN M J, CAO H, NIU L X, ZHANG S H. Study on the mechanism of ENI action on preventing drilling fluid overflowing in HDD [J]. Tunnelling and Underground Space Technology, 2018, 77: 94–102. DOI: https://doi.org/10.1016/j.tust.2018.03.021.

    Article  Google Scholar 

  178. SUN P H, ZHAO B K, CAO H, WANG J Y, MO D Q, ZHANG S H. Experimental study on the effect of cation exchange capacity on slurry properties [J]. Geotechnical and Geological Engineering, 2019, 37(4): 2387–2395. DOI: https://doi.org/10.1007/s10706-018-00763-3Y.

    Article  Google Scholar 

  179. SUN P H, LIU W S, CAO H, ZHANG K N, ZHANG S H. Field study on horizontal directional drilling technology in diversion governance of landfill leachate [J]. Exploration Engineering, 2018, 45(10): 140–144. DOI: CNKI:SUN: TKGC.0.2018-10-003.

    Google Scholar 

  180. DENG J L, NAWIR H, TATSUOKA F. Effects of viscous property and wetting on 1-D compression of clay and model simulation [J]. Soils and Foundations, 2011, 51(5): 897–913. DOI: https://doi.org/10.3208/sandf.51.897.

    Article  Google Scholar 

  181. LI J Z, CAO Y F, QING Y J. Creep property of reticulate red clay under stepped-load creep tests [J]. Advanced Materials Research, 2012, 446: 1412–1416. DOI: https://doi.org/10.4028/www.scientific.net/AMR.446-449.1412.

    Article  Google Scholar 

  182. YE W M, LAI X L, WANG Q, CHEN Y G, CHEN B, CUI Y J. An experimental investigation on the secondary compression of unsaturated GMZ01 bentonite [J]. Applied Clay Science, 2014, 97: 104–109. DOI: https://doi.org/10.1016/j.clay.2014.05.012.

    Article  Google Scholar 

  183. ZHU Y B, YU H M. An improved Mesri creep model for unsaturated weak intercalated soils [J]. Journal of Central South University, 2014, 21(12): 4677–4681.

    Article  Google Scholar 

  184. LIU L L, DENG Z P, ZHANG S H, CHENG Y M. Simplified framework for system reliability analysis of slopes in spatially variable soils [J]. Engineering Geology, 2018, 239: 330–343. DOI: https://doi.org/10.1016/j.enggeo.2018.04.009.

    Article  Google Scholar 

  185. HE Y, HUANG R Q, CHEN Y G, YE W M. Water retention properties of deformable compacted red clay induced by wetting and drying [J]. Journal of Central South University: Science and Technology, 2016, 47(1): 143–148. (in Chinese).

    Google Scholar 

  186. HE Y, LI B B, ZHANG K N, LI Z, CHEN Y G, YE W M. Experimental and numerical study on heavy metal contaminant migration and retention behavior of engineered barrier in tailings pond [J]. Environmental Pollution, 2019, 252: 1010–1018. DOI: https://doi.org/10.1016/j.envpol.2019.06.072.

    Article  Google Scholar 

  187. HE Y, YE W M, CHEN Y G, ZHANG K N, WU D Y. Effects of NaCl solutions on the swelling and shrinkage behavior of compacted bentonite under one-dimensional conditions[J]. Bulletin of Engineering Geology and the Environment, 2019, 73: 399–410. DOI: https://doi.org/10.1007/s10064-019-01568-1.

    Google Scholar 

  188. HE Y, CHEN Y G, ZHANG K N, YE W M, WU D Y. Removal of chromium and strontium from aqueous solutions by adsorption on laterite [J]. Archives of Environmental Protection, 2019, 45(3): 11–20. DOI: https://doi.org/10.24425/aep.2019.128636.

    Google Scholar 

  189. HE Y, ZHANG K N, WU D Y, LI H Z. Experimental and modeling study of soil water retention curves of compacted bentonite considering salt solution effects [J]. Geofluids, 2019: 4508603. DOI: https://doi.org/10.1155/2019/4508603.

  190. HUANG H X, LI R X, JIANG Z X, LI J, CHEN L. Investigation of variation in shale gas adsorption capacity with burial depth: Insights from the adsorption potential theory [J]. Journal of Natural Gas Science and Engineering, 2019: 103043. DOI: https://doi.org/10.1016/j.jngse.2019.103043.

  191. HE Z L, LI S J, NIE H K, YUAN Y S, WANG H. The shale gas “sweet window”: “The cracked and unbroken” state of shale and its depth range [J]. Marine and Petroleum Geology, 2019, 101: 334–342. DOI: https://doi.org/10.1016/j.marpetgeo.2018.11.033.

    Article  Google Scholar 

  192. CAO H, WANG T Y, BAO T, SUN P H, ZHANG Z, WU J J. Effective exploitation potential of shale gas from lower Cambrian Niutitang formation, northwestern Hunan, China [J]. Energies, 2018, 11(12): 3373. DOI:https://doi.org/10.3390/en11123373.

    Article  Google Scholar 

  193. CAO H, ZHANG Z, BAO T, SUN P H, WANG T Y, GAO Q. Experimental investigation of the effects of drilling fluid activity on the hydration behavior of shale reservoirs in Northwestern Hunan, China [J]. Energies, 2019, 12(16): 3151. DOI: https://doi.org/10.3390/en12163151.

    Article  Google Scholar 

  194. LIU L L, CHENG Y M, ZHANG S H. Conditional random field reliability analysis of a cohesion-frictional slope [J]. Computers and Geotechnics, 2017, 82: 173–186. DOI: https://doi.org/10.1016/j.compgeo.2016.10.014.

    Article  Google Scholar 

  195. LIU Z F, SHAO Y J, WANG C, LIU Q Q. Genesis of the Dongguashan skarn Cu-(Au) deposit in Tongling, Eastern China: Evidence from fluid inclusions and HOS-Pb isotopes [J]. Ore Geology Reviews, 2019, 104: 462–476. DOI: https://doi.org/10.1016/j.oregeorev.2018.11.021.

    Article  Google Scholar 

  196. LIU L L, CHENG Y M, WANG X M, ZHANG S H, WU Z H. System reliability analysis and risk assessment of a layered slope in spatially variable soils considering stratigraphic boundary uncertainty [J]. Computers and Geotechnics, 2017, 89: 213–225. DOI: https://doi.org/10.1016/j.compgeo.2017.05.014.

    Article  Google Scholar 

  197. LIU L L, CHENG Y M, PAN Q J, DIAS D. Incorporating stratigraphic boundary uncertainty into reliability analysis of slopes in spatially variable soils using one-dimensional conditional Markov chain model [J]. Computers and Geotechnics, 2020, 118: 103321. DOI: https://doi.org/10.1016/j.compgeo.2019.103321.

    Article  Google Scholar 

Download references

Acknowledgment

The authors are grateful to Prof. DAI Qian-wei, Prof. SHAO Yong-jun, and Prof. FENG De-shan in Central South University for the information support and thank REN Zheng-yong, SUN Ya, CHEN Bo, LU Guang-yin, TAN Jing-qiang, LIU Lei, YUAN Ling-ling and ZHENG Han in Central South University for valuable discussion on the final version and preparation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-xin Liu  (柳建新).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Zw., Lai, Jq., Zhang, Kn. et al. Geosciences in Central South University: A state-of-the-art review. J. Cent. South Univ. 27, 975–996 (2020). https://doi.org/10.1007/s11771-020-4347-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4347-5

Key words

关键词

Navigation