Skip to main content

Advertisement

Log in

Controlled-Source Electromagnetic Approaches for Hydrocarbon Exploration and Monitoring on Land

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Electromagnetic methods that utilize controlled sources have been applied for natural resource exploration for more than a century. Nevertheless, concomitant with the recent adoption of marine controlled-source electromagnetics (CSEM) by the hydrocarbon industry, the overall usefulness of CSEM methods on land has been questioned within the industry. Truly, there are few published examples of land CSEM surveys carried out completely analogously to the current marine CSEM standard approach of towing a bipole source across an array of stationary receivers, continuously transmitting a low-frequency signal and interpreting the data in the frequency domain. Rather, different sensitivity properties of different exploration targets in diverse geological settings, gradual advances in theoretical understanding, acquisition and computer technology, and different schools in different parts of the world have resulted in a sometimes confusing multitude of land-based controlled-source EM surveying approaches. Here, I aim to review previous and present-day approaches, and provide reasoning for their diversity. I focus on surface-based techniques while excluding airborne EM and well logging and on applications for hydrocarbon exploration. Attempts at the very demanding task of using onshore controlled-source EM for reservoir monitoring are shown, and the possible future potential of EM monitoring is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • An Z, Di Q (2010) Application of the CSAMT method for exploring deep coal mines in Fujian Province, Southeastern China. J Environ Eng Geophys 15(4):243–249

    Article  Google Scholar 

  • Andrieux P (1996) Introduction. Geophys Prospect 44(6):921–922

    Article  Google Scholar 

  • Antonov EY, Kozhevnikov NO, Korsakov MA (2014) Software for inversion of TEM data affected by fast-decaying induced polarization. Russ Geol Geophys 55(8):1019–1027

    Article  Google Scholar 

  • Árnason K, Eysteinsson H, Hersir GP (2010) Joint 1D inversion of TEM and MT data and 3D inversion of MT data in the Hengill area, SW Iceland. Geothermics 39(1):13–34

    Article  Google Scholar 

  • Avdeeva A, Becken M, Streich R (2014) Towards imaging the earth using EM fields emitted by DC railways. In: IAGA WG 1.2 workshop on electromagnetic induction in the earth, Weimar, Germany

  • Barannik MB, Kolobov VV, Selivanov VN, Kuklin DV, Zhamaletdinov AA, Shevtsov AN (2013) Portable generator for deep electromagnetic soundings and monitoring of seismically active zones with the use of industrial power transmission lines. Seism Instrum 49(3):275–284

    Article  Google Scholar 

  • Bartel LC, Newman GA (1991) Mapping a 3D conductivity anomaly using a vertical electric source: field results. In: SEG technical program expanded abstracts 1991, pp 472–475

  • Becken M, Lindau T (2014) Utilizing impressed current cathodic protection as the source for electromagnetic exploration. In: \(76^{th}\) EAGE conference and exhibition—workshops, pp WS9–C06

  • Bellairs G (1955) Instrumentation for a new electromagnetic geophysical field technique, as applied in South Africa. Geophysics 20(1):155–162

    Article  Google Scholar 

  • Bergmann P, Ivandic M, Norden B, Rücker C, Kiessling D, Lüth S, Schmidt-Hattenberger C, Juhlin C (2014) Combination of seismic reflection and constrained resistivity inversion with an application to 4D imaging of the CO2 storage site, Ketzin, Germany. Geophysics 79(2):B37–B50

    Article  Google Scholar 

  • Blau LW (1933) Method and apparatus for geophysical exploration. United States Patent 1,911,137

  • Blau LW, Statham L (1939) Electric earth transient in geophysical prospecting. United States Patent 2,160,824

  • Blau LW, Statham L (1940) Electric earth transients in geophysical prospecting. United States Patent 2,202,369

  • Boerner DE (1992) Controlled source electromagnetic deep sounding: theory, results and correlation with natural source results. Surv Geophys 13(4–5):435–488

    Article  Google Scholar 

  • Bourgeois B, Girard J (2010) First modelling results of the EM response of a CO2 storage in the Paris Basin. Oil Gas Sci Technol Rev IFP 65(4):597–614

    Article  Google Scholar 

  • Boyd GW, Wiles CJ (1984) The Newmont drillhole EMP system—examples from eastern Australia. Geophysics 49(7):949–956

    Article  Google Scholar 

  • Brown V, Key K, Singh S (2012) Seismically regularized controlled-source electromagnetic inversion. Geophysics 77(1):E57–E65

    Article  Google Scholar 

  • Butler DB (1995) The effect of steam injection on the electrical conductivity of sand and clay. Ph.D. thesis, University of British Columbia

  • Chave AD (2009) On the electromagnetic fields produced by marine frequency domain controlled sources. Geophys J Int 179:1429–1457

    Article  Google Scholar 

  • Chen J, Alumbaugh DL (2011) Three methods for mitigating airwaves in shallow water marine controlled-source electromagnetic data. Geophysics 76(2):F89–F99

    Article  Google Scholar 

  • Colombo D, McNeice GW (2013) Quantifying surface-to-reservoir electromagnetics for waterflood monitoring in a Saudi Arabian carbonate reservoir. Geophysics 78(6):E281–E297

    Article  Google Scholar 

  • Colombo D, Rovetta D, Sandoval Curiel E, Ley RE, Wang W, Liang C (2013) 3D seismic-gravity simultaneous joint inversion for near surface velocity estimation. In: \(75^{th}\) EAGE conference and exhibition, London, p Th 01 06

  • Commer M, Newman GA (2008) New advances in three-dimensional controlled-source electromagnetic inversion. Geophys J Int 172:513–535

    Article  Google Scholar 

  • Commer M, Newman GA (2009) Three-dimensional controlled-source electromagnetic and magnetotelluric joint inversion. Geophys J Int 178(3):1305–1316

    Article  Google Scholar 

  • Constable S (2010) Ten years of marine CSEM for hydrocarbon exploration. Geophysics 75(5):75A67–75A81

    Article  Google Scholar 

  • Constable S, Weiss CJ (2006) Mapping thin resistors and hydrocarbons with marine EM methods: insights from 1D modeling. Geophysics 71(2):G43–G51

    Article  Google Scholar 

  • Constable SC, Parker RL, Constable CG (1987) Occam’s inversion: a practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics 75(3):289–300

    Article  Google Scholar 

  • Cuevas N (2012) Casing effect in borehole-surface (surface-borehole) EM fields. In: \(74^{th}\) EAGE conference, Barcelona, extended abstract, p P201

  • Cuevas N (2014a) Energizing a bipole casing electromagnetic source—sensitivity analysis. In: \(76^{th}\) EAGE conference, Amsterdam, extended abstract, p We E108 01

  • Cuevas NH (2014b) Analytical solutions of EM fields due to a dipolar source inside an infinite casing. Geophysics 79(5):E231–E241

    Article  Google Scholar 

  • Daft L, Williams A (1906) Apparatus for detecting and localizing mineral deposits. US Patent 817,736

  • Daily W, Ramirez A, Newmark R, Masica K (2004) Low-cost reservoir tomographs of electrical resistivity. Lead Edge 23(5):472–480

    Article  Google Scholar 

  • Davydycheva S (2010) 3D modeling of new-generation (1999–2010) resistivity logging tools. Lead Edge 29(7):780–789

    Article  Google Scholar 

  • Davydycheva S, Rykhlinski N (2011) Focused-source electromagnetic survey versus standard CSEM: 3D modeling in complex geometries. Geophysics 76(1):F27–F41

    Article  Google Scholar 

  • De Stefano M, Golfré Andreasi F, Re S, Virgilio M, Snyder FF (2011) Multiple-domain, simultaneous joint inversion of geophysical data with application to subsalt imaging. Geophysics 76(3):R69–R80

    Article  Google Scholar 

  • Dell’Aversana P (2014) Integrated geophysical models—combining rock physics with seismic, electromagnetic and gravity data. EAGE Publications BV, Houten

    Book  Google Scholar 

  • Dell’Aversana P, Ravasio A, Vitale S, Bernasconi G (2013) An integrated geophysical approach for sub basalt exploration. In: \(75^{th}\) EAGE conference and exhibition, London, p We 04 01

  • Dong W, Zhao X, Liu F, Zhao G (2008) The time-frequency electromagnetic method and its application in western China. Appl Geophys 5(2):127–135

    Article  Google Scholar 

  • Druskin VL, Knizhnerman LA (1988) A spectral finite-difference method for numerical-solution of three-dimensional nonstationary problems in electrical prospecting. Izvestiya Akademii Nauk SSSR, Fizika Zemli 8:63–74 in Russian

    Google Scholar 

  • Duckworth K, O’Neill D (1989) Detection of a brine conductor under an oil field by means of a fixed transmitter electromagnetic survey using a SQUID magnetometer. Can J Explor Geophys 25(1):61–73

    Google Scholar 

  • Duncan PM, Hwang A, Edwards RN, Bailey RC, Garland GD (1980) The development and applications of a wide band electromagnetic sounding system using a pseudonoise source. Geophysics 45(8):1276–1296

    Article  Google Scholar 

  • Eadie T (1980) Detection of hydrocarbon accumulations by surface electrical methods: a feasibility study. Master’s thesis, University of Toronto

  • Eidesmo T, Ellingsrud S, MacGregor LM, Constable S, Sinha MC, Johansen S, Kong FN, Westerdahl H (2002) Sea Bed Logging (SBL), a new method for remote and direct identification of hydrocarbon filled layers in deepwater areas. First Break 20(3):144–152

    Google Scholar 

  • Ellingsrud S, Eidesmo T, Sinha MC, MacGregor LM, Constable S (2002) Remote sensing of hydrocarbon layers by Seabed Logging (SBL): results from a cruise offshore Angola. Lead Edge 21(10):972–982

    Article  Google Scholar 

  • Enslin JF (1955) A new electromagnetic field technique. Geophysics 20(2):318–334

    Article  Google Scholar 

  • Everett ME (2012) Theoretical developments in electromagnetic induction geophysics with selected applications in the near surface. Surv Geophys 33(1):29–63

    Article  Google Scholar 

  • Fan Y, Snieder R, Slob E, Hunziker J, Singer J, Sheiman J, Rosenquist M (2012) Increasing the sensitivity of controlled-source electromagnetics with synthetic aperture. Geophysics 77(2):E135–E145

    Article  Google Scholar 

  • Fox RW (1830) On the electro-magnetic properties of metalliferous veins in the mines of Cornwall. Philos T R Soc Lond 120(B3):399–414

    Article  Google Scholar 

  • Fraser-Smith AC, Coates DB (1978) Large-amplitude ULF electromagnetic fields from BART. Radio Sci 13(4):661–668

    Article  Google Scholar 

  • Freeman M (1987) MHD pulsed power for geophysics and the SDI. Exec Intell Rev 14(7):24–31

    Google Scholar 

  • Frischknecht FC, Raab PV (1984) Time-domain electromagnetic soundings at the Nevada Test Site, Nevada. Geophysics 49(7):981–992

    Article  Google Scholar 

  • Frischknecht FC, Labson VF, Spies BR, Anderson WL (1991) Profiling methods using small sources. In: Nabighian MN (ed) Electromagnetic methods in applied geophysics, vol 2. Society of Exploration Geophysicists, Tulsa, pp 105–270

  • Gallardo LA, Fontes SL, Meju MA, Buonora MP, de Lugao PP (2012) Robust geophysical integration through structure-coupled joint inversion and multispectral fusion of seismic reflection, magnetotelluric, magnetic, and gravity images: example from Santos Basin, offshore Brazil. Geophysics 77(5):B237–B251

    Article  Google Scholar 

  • Gallardo LA, Meju MA (2011) Structure-coupled multiphysics imaging in geophysical sciences. Rev Geophys 49(1):1–19

    Article  Google Scholar 

  • Gao G, Abubakar A, Habashy TM (2012) Joint petrophysical inversion of electromagnetic and full-waveform seismic data. Geophysics 77(3):WA3–WA18

    Article  Google Scholar 

  • Gasperikova E, Hoversten GM (2006) A feasibility study of nonseismic geophysical methods for monitoring geologic CO2 sequestration. Lead Edge 25(10):1282–1288

    Article  Google Scholar 

  • Gella N (1930) Geo-electric investigations of non-conductors: four new examples. AAPG Bull 14(9):1165–1176

    Google Scholar 

  • Gish OH (1932) Use of geoelectric methods in search for oil. AAPG Bull 16(12):1337–1348

    Google Scholar 

  • Gist G, Ciucivara A, Houck R, Rainwater M, Willen D, Zhou J-J (2013) Case study of a CSEM false positive—Orphan Basin, Canada. In: Society of Exploration Geophysicists annual meeting, expanded abstract, Houston, pp 805–809

  • Glenn WE, Ryu J, Ward SH, Peeples WJ, Phillips RJ (1973) The inversion of vertical magnetic dipole sounding data. Geophysics 38(6):1109–1129

    Article  Google Scholar 

  • Goldstein MA, Strangway DW (1975) Audio-frequency magnetotellurics with a grounded electric dipole source. Geophysics 40(4):669–683

    Article  Google Scholar 

  • Gómez-Trevino E, Edwards RN (1983) Electromagnetic soundings in the sedimentary basin of southern Ontario—a case history. Geophysics 48(3):311–330

    Article  Google Scholar 

  • Gómez-Treviño E, Esparza FJ (2014) What is the depth of investigation of a resistivity measurement? Geophysics 79(2):W1–W10

    Article  Google Scholar 

  • Grayver AV, Streich R, Ritter O (2014) 3D inversion and resolution analysis of land-based CSEM data from the Ketzin CO2 storage formation. Geophysics 79(2):E101–E114

    Article  Google Scholar 

  • Grayver AV, Streich R, Ritter O (2013) Three-dimensional parallel distributed inversion of CSEM data using a direct forward solver. Geophys J Int 193:1432–1446

    Article  Google Scholar 

  • Greaves RJ, Fulp TJ (1987) Threedimensional seismic monitoring of an enhanced oil recovery process. Geophysics 52(9):1175–1187

    Article  Google Scholar 

  • Gribenko A, Zhdanov M (2007) Rigorous 3D inversion of marine CSEM data based on the integral equation method. Geophysics 72(2):WA73–WA84

    Article  Google Scholar 

  • Guelke R (1945) A geophysical prospecting instrument using alternating currents of audio-frequency. J Sci Instrum 22(8):141–145

    Article  Google Scholar 

  • Guerra I, Ceci F, Miotti F, Lovatini A, Milne G, Paydayesh M, Leathard M, Sharma A (2013) Multi-measurement integration—a case study from the Barents Sea. First Break 31(4):55–61

    Google Scholar 

  • Gunderson BM, Newman GA, Hohmann GW (1986) Threedimensional transient electromagnetic responses for a grounded source. Geophysics 51(11):2117–2130

    Article  Google Scholar 

  • Haber E, Gazit MH (2013) Model fusion and joint inversion. Surv Geophys 34:675–695

    Article  Google Scholar 

  • Haber E, Oldenburg DW, Shekhtman R (2007) Inversion of time domain three-dimensional electromagnetic data. Geophys J Int 171:550–564

    Article  Google Scholar 

  • Hall SH (1983) The rotating current dipole. Geophysics 48(9):1233–1247

    Article  Google Scholar 

  • Hanstein T (1996) Digitale Optimalfilter für LOTEM Daten. In: Protokoll über das Kolloquium Elektromagnetische Tiefenforschung, pp 320–328

  • Harris P, MacGregor L (2006) Determination of reservoir properties from the integration of CSEM, seismic, and well-log data. First Break 24(11):53–59

    Google Scholar 

  • He Z, Hu W, Dong W (2010) Petroleum electromagnetic prospecting advances and case studies in China. Surv Geophys 31(2):207–224

    Article  Google Scholar 

  • He Z, Hu Z, Gao Y, He L, Meng C, Yang L (2015) Field test of monitoring gas reservoir development using time-lapse continuous electromagnetic profile method. Geophysics 80(2):WA127–WA134

    Article  Google Scholar 

  • He Z, Liu X, Qiu W, Zhou H (2005) Mapping reservoir boundary by borehole-surface TFEM: two case studies. Lead Edge 24(9):896–900

    Article  Google Scholar 

  • He Z, Zhao Z, Liu H, Qin J (2012) TFEM for oil detection: case studies. Lead Edge 31(5):518–521

    Article  Google Scholar 

  • Hedstrom H (1930) Electrical survey of structural conditions in Salt Flat field, Caldwell County, Texas. AAPG Bull 14(9):1177–1185

    Google Scholar 

  • Heiland CA (1932) Advances in technique and application of resistivity and potential-drop-ratio methods in oil prospecting. AAPG Bull 16(12):1260–1336

    Google Scholar 

  • Helwig SL (1998) Using PRBS-sequences as source for TEM-measurements. In: \(60^{th}\) EAGE conference, Leipzig, extended abstract

  • Helwig SL, Mogilatov VS, Balashov BP (2010) Enhanced sensitivity in land EM by using an unconventional source. In: EGM international workshop, Capri, Italy, extended abstract

  • Hestenes MR, Stiefel E (1952) Methods of conjugate gradients for solving linear systems. J Res Natl Bur Stand 49(6):409–436

    Article  Google Scholar 

  • Hibbs AD, Petrov TR, Pendleton J, Agundes A, Kouba S, Hall T, Boyle D, Martin T, Schenkel C, Morrison HF (2014) Advances in electromagnetic survey instrumentation and the use of a cased borehole for imaging a deep formations. In: \(76^{th}\) EAGE conference and exhibition—workshops, pp WS9–C05

  • Hohmann GW (1975) Three-dimensional induced polarization and electromagnetic modeling. Geophysics 40(2):309–324

    Article  Google Scholar 

  • Hohmann GW, Vanvoorhis GD, Nelson PH (1978) A vector EM system and its field applications. Geophysics 43(7):1418–1440

    Article  Google Scholar 

  • Holladay JS, West GF (1984) Effect of well casings on surface electrical surveys. Geophysics 49(2):177–188

    Article  Google Scholar 

  • Hördt A, Andrieux P, Neubauer F, Rüter H, Vozoff K (2000) A first attempt at monitoring underground gas storage by means of time-lapse multichannel transient electromagnetics. Geophys Prospect 48:489–509

    Article  Google Scholar 

  • Hördt A, Scholl C (2004) The effect of local distortions on timedomain electromagnetic measurements. Geophysics 69(1):87–96

    Article  Google Scholar 

  • Hornman K, Forgues E (2013) Permanent reservoir monitoring with onshore surface seismic. In: Second EAGE workshop on permanent reservoir monitoring, pp We–01–04

  • Hoversten GM, Cassassuce F, Gasperikova E, Newman GA, Chen J, Rubin Y, Hou Z, Vasco D (2006) Direct reservoir parameter estimation using joint inversion of marine seismic AVA and CSEM data. Geophysics 71(3):C1–C13

    Article  Google Scholar 

  • Hu W, Yan L, Su Z, Zheng R, Strack K (2008) Array TEM sounding and application for reservoir monitoring. In: SEG technical program expanded abstracts, pp 634–638

  • Hughes LJ, Carlson NR (1987) Structure mapping at Trap Spring Oilfield, Nevada, using controlled-source magnetotellurics. First Break 5(11):403–418

    Google Scholar 

  • Isaac JH, Lawton DC (2006) A case history of time-lapse 3D seismic surveys at Cold Lake, Alberta, Canada. Geophysics 71(4):B93–B99

    Article  Google Scholar 

  • Ivanova A, Kashubin A, Juhojuntti N, Kummerow J, Henninges J, Juhlin C, Lüth S, Ivandic M (2012) Monitoring and volumetric estimation of injected \({{\rm CO}}_2\) using 4D seismic, petrophysical data, core measurements and well logging: a case study at Ketzin, Germany. Geophys Prospect 60(5):957–973

    Article  Google Scholar 

  • Jenny WP (1930) Electric and electromagnetic prospecting for oil. AAPG Bull 14(9):1199–1213

    Google Scholar 

  • Johnson IM, Doborzynski ZB (1986) A novel ground electromagnetic system. Geophysics 51(2):396–409

    Article  Google Scholar 

  • Jupp DLB, Vozoff K (1975) Stable iterative methods for the inversion of geophysical data. Geophys J R Astr S 42(3):957–976

    Article  Google Scholar 

  • Jupp DLB, Vozoff K (1977) Resolving anisotropy in layered media by joint inversion. Geophys Prospect 25(3):460–470

    Article  Google Scholar 

  • Karcher JC, McDermot E (1935) Deep electrical prospecting. AAPG Bull 19(1):64–77

    Google Scholar 

  • Kaufman AA (1978) Resolving capabilities of the inductive methods of electroprospecting. Geophysics 43(7):1392–1398

    Article  Google Scholar 

  • Kaufman AA (1989) A paradox in geoelectromagnetism, and its resolution, demonstrating the equivalence of frequency and transient domain methods. Geoexploration 25(4):287–317

    Article  Google Scholar 

  • Kaufman AA, Alekseev D, Oristaglio M (2014) Principles of electromagnetic methods in surface geophysics. In: Methods in geochemistry and geophysics, vol 45. Elsevier, Amsterdam

  • Kaufman AA, Dashevsky YA (2003) Principles of induction logging. In: Methods in geochemistry and geophysics, vol 38. Elsevier, Amsterdam

  • Kaufman AA, Keller CV (1983) Frequency and transient soundings. Elsevier, Amsterdam

    Google Scholar 

  • Keller GV, Frischknecht FC (1966) Electrical methods of geophysical prospecting. Pergamon, Elmsford

    Google Scholar 

  • Keller GV, Pritchard JI, Jacobson JJ, Harthill N (1984) Megasource timedomain electromagnetic sounding methods. Geophysics 49(7):993–1009

    Article  Google Scholar 

  • Kiyashchenko D, Lopez J, Berlang W, Birch B, Zwaan M, Adawi R, Rocco G, Ghafri S (2013) Steam-injection monitoring in South Oman—from single-pattern to field-scale surveillance. Lead Edge 32(10):1246–1256

    Article  Google Scholar 

  • Kumar R, Al-Saeed MA, Khalid A, Lovatini A, Pezzoli M, Battaglini A, Ceci F, Roth J (2010) Land controlled-source electromagnetic surveying for viscous oil characterization in Kuwait. In: \(75^{th}\) EAGE conference, London, extended abstract, p We 04 06

  • Li X, Pedersen LB (1991) Controlled source tensor magnetotellurics. Geophysics 56(9):1456–1461

    Article  Google Scholar 

  • Lien M, Mannseth T (2008) Sensitivity study of marine CSEM data for reservoir production monitoring. Geophysics 73(4):F151–F163

    Article  Google Scholar 

  • Løseth LO, Amundsen L, Jenssen AJK (2010) A solution to the airwave-removal problem in shallow-water marine EM. Geophysics 75(5):A37–A42

    Article  Google Scholar 

  • Lovatini A, Medina E, Pezzoli M (2012) Seismic geobody-driven 3D controlled-source electromagnetic modeling. In: \(74^{th}\) EAGE conference, Copenhagen, extended abstract, p A012

  • Lowes FJ (2009) DC railways and the magnetic fields they produce—the geomagnetic context. Earth Planets Space, 61:i–xv

  • Maaø FA, Nguyen AK (2010) Enhanced subsurface response for marine CSEM surveying. Geophysics 75(3):A7–A10

    Article  Google Scholar 

  • MacGregor L, Andreis D, Tomlinson J, Barker N (2006) Controlled-source electromagnetic imaging on the Nuggets-1 reservoir. Lead Edge 25(8):984–992

    Article  Google Scholar 

  • Macnae J, Lamontagne Y, West G (1984) Noise processing techniques for timedomain em systems. Geophysics 49(7):934–948

    Article  Google Scholar 

  • Maillet R (1947) The fundamental equations of electrical prospecting. Geophysics 12(4):529–556

    Article  Google Scholar 

  • Mansure AJ, Meldau RF, Weyland HV (1993) Field examples of electrical resistivity changes during steamflooding. SPE Form Eval 8(1):57–64

    Article  Google Scholar 

  • Mantovani M, Clementi M, Ceci F (2013) Use of simultaneous joint inversion as a maximum concordance solver for statics. In: \(75^{th}\) EAGE conference and exhibition, London, p Th–01–03

  • Marsala AF, Al-Buali M, Ali Z, Ma SM, He Z, Biyan T, He T, Zhao G (2011) First pilot of borehole to surface electromagnetic in Saudi Arabia—a new technology to enhance reservoir mapping and monitoring. In: \(73^{rd}\) EAGE conference and exhibition, Vienna, Austria, p 1005

  • Marsala AF, Lyngra S, Widjaja DR, Laota AS, Al-Otaibi NM, He Z, Zhao G, Xu J, Yang C (2013) Fluid distribution inter-well mapping in multiple reservoirs by innovative borehole to surface electromagnetic: survey design and field acquisition. In: International petroleum technology conference (IPTC), Beijing, China, p IPTC 17045

  • McBarnet A, Ziolkowski A (2005) Why MTEM sounded a good idea at the time. First Break 23(1):59–62

    Google Scholar 

  • McCracken KG, Oristaglio ML, Hohmann GW (1986a) A comparison of electromagnetic exploration systems. Geophysics 51(3):810–818

    Article  Google Scholar 

  • McCracken KG, Oristaglio ML, Hohmann GW (1986b) Minimization of noise in electromagnetic exploration systems. Geophysics 51(3):819–832

    Article  Google Scholar 

  • McCracken K G, Hohmann GW, Oristaglio ML (1980) Why time domain?: The geophysics of the Elura Orebody, Cobar, NSW. In Emerson DW (ed) Proceedings of the ELURA symposium, Sydney, Australia. Australian Society of Exploration Geophysicists, pp 176–179

  • McMillan MS, Oldenburg DW (2014) Cooperative constrained inversion of multiple electromagnetic data sets. Geophysics 79(4):B173–B185

    Article  Google Scholar 

  • Melton BS (1937) Electromagnetic prospecting method. United States Patent 2,077,707

  • Meqbel N, Ritter O (2014) New advances for a joint 3D inversion of multiple EM methods. In: \(76^{th}\) EAGE conference and exhibition—workshops, pp WS9–B03

  • Miotti F, Guerra I, Ceci F, Lovatini A, Paydayesh M, Milne G, Leathard M, Sharma A (2014) Estimation of the petrophysical model through the joint inversion of seismic and EM attributes. In: \(76^{th}\) EAGE conference and exhibition—workshops, pp WS9–B04

  • Mogilatov V, Balashov B (1996) A new method of geoelectrical prospecting by vertical electric current soundings. J Appl Geophys 36:31–41

    Article  Google Scholar 

  • Moorkamp M, Roberts AW, Jegen M, Heincke B, Hobbs RW (2013) Verification of velocity–resistivity relationships derived from structural joint inversion with borehole data. Geophys Res Lett 40:1–6

    Article  Google Scholar 

  • Morrison HF, Shoham Y, Hoversten GM, Torres-Verdín C (1996) Electromagnetic mapping of electrical conductivity beneath the Columbia basalts. Geophys Prospect 44(6):963–986

    Article  Google Scholar 

  • Muñoz G (2014) Exploring for geothermal resources with electromagnetic methods. Surv Geophys 35(1):101–122

    Article  Google Scholar 

  • Nabighian M (2012) Comment on electromagnetic geophysics: notes from the past and the road ahead (Michael S Zhdanov, 2010, Geophysics, 75, no. 5, 75A4975A66). Geophysics 77(4):X3–X10

    Article  Google Scholar 

  • Nabighian MN (1979) Quasistatic transient response of a conducting halfspace—an approximate representation. Geophysics 44(10):1700–1705

    Article  Google Scholar 

  • Nabighian MN (ed) (1988) Electromagnetic methods in applied geophysics. In: Volume 1, Theory. Society of Exploration Geophysicists, Tulsa

  • Nabighian MN (ed) (1991) Electromagnetic methods in applied geophysics. In: Volume 2, Application. Society of Exploration Geophysicists, Tulsa

  • Nabighian MN, Macnae JC (1991) Time-domain electromagnetic prospecting methods. In: Nabighian MN (ed) Electromagnetic methods in applied geophysics, vol 2. Society of Exploration Geophysicists, Tulsa, pp 427–520

  • Nekut AG, Spies BR (1989) Petroleum exploration using controlled-source electromagnetic methods. Proc IEEE 77(2):338–362

    Article  Google Scholar 

  • Neska A (2009) Subsurface conductivity obtained from DC railway signal propagation with a dipole model. In: Ritter O, Weckmann U (eds) Protokoll über das 23. Schmucker-Weidelt-Kolloquium für Elektromagnetische Tiefenforschung. German Geophysical Society, Potsdam, pp 244–251

  • Newman GA (1989) Deep transient electromagnetic soundings with a grounded source over near-surface conductors. Geophys J Int 98(3):587–601

    Article  Google Scholar 

  • Newman GA (1994) A study of downhole electromagnetic sources for mapping enhanced oil recovery processes. Geophysics 59(4):534–545

    Article  Google Scholar 

  • Newman GA (2014) A review of high-performance computational strategies for modeling and imaging of electromagnetic induction data. Surv Geophys 35(1):85–100

    Article  Google Scholar 

  • Newman GA, Alumbaugh DL (1997) Three-dimensional massively parallel electromagnetic inversion—I. Theory. Geophys J Int 128:345–354

    Article  Google Scholar 

  • Newman GA, Commer M, Carazzone JJ (2010) Imaging CSEM data in the presence of electrical anisotropy. Geophysics 75(2):F51–F61

    Article  Google Scholar 

  • Oldenburg DW, Haber E, Shekhtman R (2013) Three dimensional inversion of multisource time domain electromagnetic data. Geophysics 78(1):E47–E57

    Article  Google Scholar 

  • Oristaglio M, Worthington M (1980) Inversion of surface and borehole electromagnetic data for two-dimensional electrical conductivity models. Geophys Prospect 28(4):633–657

    Article  Google Scholar 

  • Pardo D, Torres-Verdín C, Zhang Z (2008) Sensitivity study of borehole-to-surface and crosswell electromagnetic measurements acquired with energized steel casing to water displacement in hydrocarbon-bearing layers. Geophysics 73(6):F261–F268

    Article  Google Scholar 

  • Passalacqua H (1983) Electromagnetic fields due to a thin resistive layer. Geophys Prospect 31(6):945–976

    Article  Google Scholar 

  • Peacock JR, Thiel S, Heinson GS, Reid P (2013) Time-lapse magnetotelluric monitoring of an enhanced geothermal system. Geophysics 78(3):B121–B130

    Article  Google Scholar 

  • Pellerin L, Hohmann GW (1990) Transient electromagnetic inversion: a remedy for magnetotelluric static shifts. Geophysics 55(9):1242–1250

    Article  Google Scholar 

  • Pellerin L, Hohmann GW (1995) A parametric study of the vertical electric source. Geophysics 60(1):43–52

    Article  Google Scholar 

  • Peters LJ, Bardeen J (1932) Some aspects of electrical prospecting applied in locating oil structures. J Appl Phys 2(3):103–122

    Google Scholar 

  • Petersson W (1907) Das Aufsuchen von Erzen mittels Elektrizität. Glückauf 43(29):906–910

    Google Scholar 

  • Plessix R-E, Darnet M, Mulder WA (2007) An approach for 3D multisource, multifrequency CSEM modeling. Geophysics 72(5):SM177–SM184

    Google Scholar 

  • Plessix R-E, Mulder WA (2008) Resistivity imaging with controlled-source electromagnetic data: depth and data weighting. Inverse Probl 24:034012

    Article  Google Scholar 

  • Pridmore DF, Hohmann GW, Ward SH, Sill WR (1981) An investigation of finite-element modeling for electrical and electromagnetic data in three dimensions. Geophysics 46(7):1009–1024

    Article  Google Scholar 

  • Puzyrev V, Koldan J, de la Puente J, Houzeaux G, Vázquez M, Cela JM (2013) A parallel finite-element method for three-dimensional controlled-source electromagnetic forward modelling. Geophys J Int 193(2):678–693

    Article  Google Scholar 

  • Qian W, Pedersen LB (1991) Industrial interference magnetotellurics: an example from the Tangshan area, China. Geophysics 56(2):265–273

    Article  Google Scholar 

  • Raiche AP (1983) Comparison of apparent resistivity functions for transient electromagnetic methods. Geophysics 48(6):787–789

    Article  Google Scholar 

  • Raiche AP, Jupp DLB, Rutter H, Vozoff K (1985) The joint use of coincident loop transient electromagnetic and Schlumberger sounding to resolve layered structures. Geophysics 50(10):1618–1627

    Article  Google Scholar 

  • Rondeleux B, Spitz S (2010) Feasibility of EM monitoring—acquisition and inversion. In: \(72^{nd}\) EAGE conference, Barcelona, Spain, extended abstract

  • Routh PS, Oldenburg DW (1999) Inversion of controlled source audiofrequency magnetotellurics data for a horizontally layered earth. Geophysics 64(6):1689–1697

    Article  Google Scholar 

  • Rust WM Jr (1938) A historical review of electrical prospecting methods. Geophysics 3(1):1–6

    Article  Google Scholar 

  • San Filipo WA, Hohmann GW (1983) Computer simulation of low-frequency electromagnetic data acquisition. Geophysics 48(9):1219–1232

    Article  Google Scholar 

  • Sandberg SK, Hohmann GW (1982) Controlled-source audiomagnetotellurics in geothermal exploration. Geophysics 47(1):100–116

    Article  Google Scholar 

  • Schaller A, Hunziker J, Streich R, Drijkoningen G (2014) Sensitivity of the near-surface vertical electric field in land controlled-source electromagnetic monitoring. In: \(84^{th}\) SEG annual meeting, Denver, extended abstract

  • Schamper C, Rejiba F, Tabbagh A, Spitz S (2011) Theoretical analysis of long offset time-lapse frequency domain controlled source electromagnetic signals using the method of moments: application to the monitoring of a land oil reservoir. J Geophys Res-Solid Earth 116(B3):B03101

    Article  Google Scholar 

  • Schlumberger C (1920) Study of underground electrical prospecting. Paris, translated to English by Kelly SF

  • Schön JH (2004) Physical properties of rocks: fundamentals and principles of petrophysics. Elsevier, Amsterdam

    Google Scholar 

  • Schwarzbach C, Börner R-U, Spitzer K (2011) Three-dimensional adaptive higher order finite element simulation for geo-electromagnetics—a marine CSEM example. Geophys J Int 187:63–74

    Article  Google Scholar 

  • Schwarzbach C, Haber E (2013) Finite element based inversion for time-harmonic electromagnetic problems. Geophys J Int 193(2):615–634

    Article  Google Scholar 

  • Sheard S, Ritchie T, Christopherson KR, Brand E (2005) Mining, environmental, petroleum, and engineering industry applications of electromagnetic techniques in geophysics. Surv Geophys 26(5):653–669

    Article  Google Scholar 

  • Siemon B, Christiansen AV, Auken E (2009) A review of helicopter-borne electromagnetic methods for groundwater exploration. Near Surf Geophys 7(5–6):629–646

    Google Scholar 

  • Smith R (2014) Electromagnetic induction methods in mining geophysics from 2008 to 2012. Surv Geophys 35:123–156

    Article  Google Scholar 

  • Spies BR (1983) Recent developments in the use of surface electrical methods for oil and gas exploration in the Soviet Union. Geophysics 48(8):1102–1112

    Article  Google Scholar 

  • Spies BR (1988) Local noise prediction filtering for central induction transient electromagnetic sounding. Geophysics 53(8):1068–1079

    Article  Google Scholar 

  • Spies BR, Eggers DE (1986) The use and misuse of apparent resistivity in electromagnetic methods. Geophysics 51(7):1462–1471

    Article  Google Scholar 

  • Spies B R, Frischknecht FC (1991) Electromagnetic sounding. In: Nabighian MN (ed) Electromagnetic methods in applied geophysics, vol 2. Society of Exploration Geophysicists, pp 285–425

  • Srnka LJ, Carazzone JJ, Ephron MS, Eriksen EA (2006) Remote reservoir resistivity mapping. Lead Edge 25(8):972–975

    Article  Google Scholar 

  • Statham L (1936) Electric earth transients in geophysical prospecting. Geophysics 1(2):271–277

    Article  Google Scholar 

  • Statham L (1939) Method and apparatus for comparing electrical transients. United States Patent 2,113,749

  • Stephan A, Strack K-M (1991) A simple approach to improve the S/N ratio for TEM data using multiple receivers. Geophysics 56(6):863–869

    Article  Google Scholar 

  • Sternberg BK, Washburne JC, Pellerin L (1988) Correction for the static shift in magnetotellurics using transient electromagnetic soundings. Geophysics 53(11):1459–1468

    Article  Google Scholar 

  • Sternberg BK (1979) Electrical resistivity structure of the crust in the southern extension of the Canadian Shield Layered Earth models. J Geophys Res-Solid Earth 84(B1):212–228

    Article  Google Scholar 

  • Strack K (2014) Future directions of electromagnetic methods for hydrocarbon applications. Surv Geophys 35(1):157–177

    Article  Google Scholar 

  • Strack KM (1992) Exploration with deep transient electromagnetics. Elsevier, Amsterdam

    Google Scholar 

  • Strack KM (2004) Combined surface and wellbore electromagnetic measurement system and method for determining formation fluid properties. United States Patent 6,739,165 B1

  • Strack K-M, Hanstein T, Lelsrocq K, Moss DC, Vozoff K, Wolfgram PA (1989a) Case histories of LOTEM surveys in hydrocarbon prospective areas. First Break 7(12):467–477

    Google Scholar 

  • Strack K-M, Hanstein TH, Eilenz HN (1989b) LOTEM data processing for areas with high cultural noise levels. Phys Earth Planet Inter 53:261–269

    Article  Google Scholar 

  • Stratton JA (1941) Electromagnetic theory. McGraw-Hill, New York

    Google Scholar 

  • Streich R (2009) 3D finite-difference frequency-domain modeling of controlled-source electromagnetic data: direct solution and optimization for high accuracy. Geophysics 74(5):F95–F105

    Article  Google Scholar 

  • Streich R, Becken M (2011) Electromagnetic fields generated by finite-length wire sources: comparison with point dipole solutions. Geophys Prospect 59:361–374

    Article  Google Scholar 

  • Streich R, Becken M, Matzander U, Ritter O (2011) Strategies for land-based controlled-source electromagnetic surveying in high-noise regions. Lead Edge 30(10):1174–1181

    Article  Google Scholar 

  • Streich R, Becken M, Ritter O (2010) Imaging of \({{\rm CO}}_2\) storage sites, geothermal reservoirs, and gas shales using controlled-source magnetotellurics: Modeling studies. Chemie der Erde (Geochemistry) 70(S3):63–75

    Article  Google Scholar 

  • Streich R, Becken M, Ritter O (2013) Robust processing of noisy land-based controlled-source electromagnetic data. Geophysics 78(5):E237–E247

    Article  Google Scholar 

  • Sudha A, Tezkan B, Siemon B (2014) Appraisal of a new 1D weighted joint inversion of ground based and helicopter-borne electromagnetic data. Geophys Prospect 62(3):597–614

    Article  Google Scholar 

  • Sundberg K (1930) Electrical prospecting for oil structure. AAPG Bull 14(9):1145–1163

    Google Scholar 

  • Swidinsky A, Edwards RN, Jegen M (2013) The marine controlled source electromagnetic response of a steel borehole casing: applications for the NEPTUNE Canada gas hydrate observatory. Geophys Prospect 61(4):842–856

    Article  Google Scholar 

  • Szarka L (1988) Geophysical aspects of man-made electromagnetic noise in the earth. Surv Geophys 9:287–318

    Article  Google Scholar 

  • Szarka L (2009) Early analogue modeling experiments and related studies to todays problems of geo-electromagnetic exploration. J Earth Sci 20:618–625

    Article  Google Scholar 

  • Tanbo T, Sakai H, Nagao T (2003) A study of geoelectric potential change caused by rail leak current observed at Ohtawa, Gifu, Japan. Electr Eng Jpn 143(2):1–10 (Translated from Denki Gakkai Ronbunshi, Vol. 122-A, No. 5, May 2002, pp. 446453)

    Article  Google Scholar 

  • Tang JT, He JS (2000) Controlled source audio magnetotelluric method and its application, Chinese edn. China Press

  • Tietze K, Ritter O (2014) Electromagnetic monitoring of the propagation of an injected polymer for enhanced oil recovery in Northern Germany. In: \(76^{th}\) EAGE conference and exhibition, Amsterdam, extended abstract

  • Tietze K, Ritter O, Veeken P (2015) Controlled-source electromagnetic monitoring of reservoir oil-saturation using a novel borehole-to-surface configuration. Geophys Prospect (in press)

  • Tikhonov AN, Arsenin VY (1977) Solutions of ill-posed problems. Winston VH and Sons, Washington

    Google Scholar 

  • Tøndel R, Schütt H, Dümmong S, Ducrocq A, Godfrey R, LaBrecque D, Nutt L, Campbell A, Rufino R (2014) Reservoir monitoring of steam-assisted gravity drainage using borehole measurements. Geophys Prospect 62(4):760–778

    Article  Google Scholar 

  • Torres-Verdín C, Habashy TM (1994) Rapid 2.5-dimensional forward modeling and inversion via a new nonlinear scattering approximation. Radio Sci 29(4):1051–1079

    Article  Google Scholar 

  • Tseng H-W, Becker A, Wilt MJ, Deszcz-Pan M (1998) A borehole-to-surface electromagnetic survey. Geophysics 63(5):1565–1572

    Article  Google Scholar 

  • Ucok H, Ershaghi I, Olhoeft GR (1980) Electrical resistivity of geothermal brines. J Petrol Technol 32(4):717–727

    Article  Google Scholar 

  • Um ES, Commer M, Newman GA (2014) A strategy for coupled 3D imaging of large-scale seismic and electromagnetic data sets: application to subsalt imaging. Geophysics 79(3):ID1–ID13

    Article  Google Scholar 

  • Um ES, Alumbaugh DL (2007) On the physics of the marine controlled-source electromagnetic method. Geophysics 72(2):WA13–WA26

    Article  Google Scholar 

  • Um ES, Commer M, Newman GA (2013) Efficient pre-conditioned iterative solution strategies for the electromagnetic diffusion in the Earth: finite-element frequency-domain approach. Geophys J Int 193:1460–1473

    Article  Google Scholar 

  • Unsworth M, Oldenburg D (1995) Subspace inversion of electromagnetic data: application to mid-ocean-ridge exploration. Geophys J Int 123(1):161–168

    Article  Google Scholar 

  • van Zijl JSV, Joubert SJ (1975) A crustal geoelectrical model for South African Precambrian granitic terrains based on deep Schlumberger soundings. Geophysics 40(4):657–663

    Article  Google Scholar 

  • Vanyan LL, Bobrovnikov LZ, Loshenitzina VL, Davidov VM, Morozova GM, Kuznetzov AN, Shtimmer AI, Terekhin EI (1967) Electromagnetic depth soundings. Cnsultants Bureau, New York (translated from Russian by Keller GV)

    Google Scholar 

  • Velikhov EP, Grigoriev VF, Zhdanov MS, Korotayev SM, Kruglyakov MS, Orekhova DA, Popova IV, Tereschenko ED, Schors YG (2011) Electromagnetic sounding of the Kola Peninsula with a powerful extremely low frequency source. Dokl Earth Sci 438(1):711–716

    Article  Google Scholar 

  • Velikhov YP, Zhdanov MS, Frenkel MA (1987) Interpretation of MHD-sounding data from the Kola Peninsula by the electromagnetic migration method. Phys Earth Planet Inter 45(2):149–160

    Article  Google Scholar 

  • Vilamajó E, Queralt P, Ledo J, Marcuello A (2013) Feasibility of monitoring the Hontomín (Burgos, Spain) CO2 storage site using a deep EM source. Surv Geophys 34(4):441–461

    Article  Google Scholar 

  • Vilamajó E, Rondeleux B, Bourgeois B, Queralt P, Marcuello A, Ledo J (2014) First results of the baseline EM monitoring experiments at the hontomín CO2 storage site (Spain): LEMAM and borehole-to-surface CSEM. In: IAGA WG 1.2 workshop on electromagnetic induction in the earth, Weimar, Germany

  • Vozoff K, Jupp DLB (1975) Joint inversion of geophysical data. Geophys J R Astr S 42:977–991

    Article  Google Scholar 

  • Wait JR (1951a) A conducting sphere in a time varying magnetic field. Geophysics 16(4):666–672

    Article  Google Scholar 

  • Wait JR (1951b) Transient electromagnetic propagation in a conducting medium. Geophysics 16(2):213–221

    Article  Google Scholar 

  • Wait JR (1952) The cylindrical ore body in the presence of a cable carrying an oscillating current. Geophysics 17(2):378–386

    Article  Google Scholar 

  • Wait JR (1954) On the relation between telluric currents and the Earth’s magnetic field. Geophysics 19(2):281–289

    Article  Google Scholar 

  • Wait JR (1962) Electromagnetic waves in stratified media. International series of monographs on electromagnetic waves. Pergamon Press, New York

  • Wait JR (1972) The effect of a buried conductor on the subsurface fields for line source excitation. Radio Sci 7(5):587–591

    Article  Google Scholar 

  • Wait JR (1982) Geo-electromagnetism. Academic Press, New York

    Google Scholar 

  • Wait JR (1983) Mutual coupling between grounded circuits and the effect of a thin vertical conductor in the earth. IEEE Trans Antenna Propag 31(4):640–644

    Article  Google Scholar 

  • Wait JR, Williams JT (1985) EM and IP response of a steel well casing for a four-electrode surface array. Part I: theory. Geophys Prospect 33:723–735

    Article  Google Scholar 

  • Wang T, Oristaglio M, Tripp A, Hohmann G (1994) Inversion of diffusive transient electromagnetic data by a conjugate-gradient method. Radio Sci 29(4):1143–1156

    Article  Google Scholar 

  • Wannamaker PE (1997) Tensor CSAMT survey over the Sulphur Springs thermal area, Valles Caldera, New Mexico, U.S.A., Part II: implications for CSAMT methodology. Geophysics 62(2):466–476

    Article  Google Scholar 

  • Wannamaker PE (2005) Anisotropy versus heterogeneity in continental solid earth electromagnetic studies: fundamental response characteristics and implications for physiochemical state. Surv Geophys 26:733–765

    Article  Google Scholar 

  • Ward SH (1980) History of geophysical exploration: electrical, electromagnetic, and magnetotelluric methods. Geophysics 45(11):1659–1666

    Article  Google Scholar 

  • Weidelt P (2007a) Guided waves in marine CSEM. Geophys J Int 171:153–176

    Article  Google Scholar 

  • Weidelt P (2007b) Guided waves in marine CSEM and the adjustment distance in MT: a synopsis. In: Protokoll über das Kolloquium Elektromagnetische Tiefenforschung, pp 1–17

  • Weiss CJ, Constable S (2006) Mapping thin resistors and hydrocarbons with marine EM methods, part II—modeling and analysis in 3D. Geophysics 71(6):G321–G332

    Article  Google Scholar 

  • West GF, Macnae JC, Lamontagne Y (1984) A time-domain EM system measuring the step response of the ground. Geophysics 49(7):1010–1026

    Article  Google Scholar 

  • Wilson AJS (1997) The equivalent wavefield concept in multichannel transient electromagnetic surveying. Ph.D. thesis, University of Edinburgh

  • Wilt M, Goldstein NE, Stark M, Haught JR, Morrison HF (1983) Experience with the EM-60 electromagnetic system for geothermal exploration in Nevada. Geophysics 48(8):1090–1101

    Article  Google Scholar 

  • Wilt MJ, Morrison HF, Lee KH, Goldstein NE (1989) Electromagnetic sounding in the Columbia Basin, Yakima, Washington. Geophysics 54(8):952–961

    Article  Google Scholar 

  • Wirianto M, Mulder WA, Slob EC (2010) A feasibility study of land CSEM reservoir monitoring in a complex 3-D model. Geophys J Int 181:741–755

    Google Scholar 

  • Wirianto M, Mulder WA, Slob EC (2011) Exploiting the airwave for time-lapse reservoir monitoring with CSEM on land. Geophysics 76(3):A15–A19

    Article  Google Scholar 

  • Won IJ (1980) A wideband electromagnetic exploration method—some theoretical and experimental results. Geophysics 45(5):928–940

    Article  Google Scholar 

  • Wright D, Ziolkowski A, Hobbs B (2002) Hydrocarbon detection and monitoring with a multicomponent transient electromagnetic (MTEM) survey. Lead Edge 21(9):852–864

    Article  Google Scholar 

  • Wright DA, Ziolkowski AM, Hobbs BA (2005) Detection of subsurface resistivity contrasts with application to location of fluids. US Patent 6,914,433 B2

  • Wu X, Habashy TM (1994) Influence of steel casings on electromagnetic signals. Geophysics 59(3):378–390

    Article  Google Scholar 

  • Yost WJ (1952) The interpretation of electromagnetic reflection data in geophysical exploration—part I, general theory. Geophysics 17(1):89–106

    Article  Google Scholar 

  • Zhamaletdinov AA, Shevtsov AN, Korotkova TG, Kopytenko YA, Ismagilov VS, Petrishev MS, Efimov BV, Barannik MB, Kolobov VV, Prokopchuk PI, Smirnov MY, Vagin SA, Pertel MI, Tereshchenko ED, Vasilev AN, Grigoryev VF, Gokhberg MB, Trofimchik VI, Yampolsky YM, Koloskov AV, Fedorov AV, Korja T (2011) Deep electromagnetic sounding of the lithosphere in the Eastern Baltic (Fennoscandian) Shield with high-power controlled sources and industrial power transmission lines (FENICS experiment). Izvestiya Phys Solid Earth 47(1):2–22

    Article  Google Scholar 

  • Zhdanov M (2009) Geophysical electromagnetic theory and methods. In: Methods in geochemistry and geophysics, vol 43. Elsevier, Amsterdam

  • Zhdanov MS (2010) Electromagnetic geophysics: notes from the past and the road ahead. Geophysics 75(5):75A49–75A66

    Article  Google Scholar 

  • Zhdanov MS (2012) Reply to the discussion. Geophysics 75(2):X10–X11

    Article  Google Scholar 

  • Zhdanov MS, Endo M, Black N, Spangler L, Fairweather S, Hibbs A, Eiskamp GA, Will R (2013) Electromagnetic monitoring of CO2 sequestration in deep reservoirs. First Break 31(2):71–78

    Google Scholar 

  • Zhdanov MS, Keller GV (1994) The geoelectrical methods in geophysical exploration. In: Methods in geochemistry and geophysics, vol 31. Elsevier, Amsterdam

  • Ziolkowski A, Hobbs B, Wright D (2002) First direct hydrocarbon detection and reservoir monitoring using transient electromagnetics. First Break 20(4):224–225

    Google Scholar 

  • Ziolkowski A, Hobbs BA, Wright D (2007) Multitransient electromagnetic demonstration survey in France. Geophysics 72(4):F197–F209

    Article  Google Scholar 

  • Ziolkowski A, Parr R, Wright D, Nockles V, Limond C, Morris E, Linfoot J (2010) Multi-transient electromagnetic repeatability experiment over the North Sea Harding field. Geophys Prospect 58:1159–1176

    Article  Google Scholar 

  • Zonge KL, Hughes LJ (1991) Controlled-source audio-frequency magnetotellurics. In: Nabighian MN (ed) Electromagnetic methods in applied geophysics. Society of Exploration Geophysicists, Tulsa, pp 713–809

Download references

Acknowledgments

I would like to thank Oliver Ritter, Ian Ferguson, and the other members of the Program Committee of the 22nd EM Induction Workshop for giving me the opportunity to present and write this review, and Shell for permitting me to work on it. I am grateful for discussions with many colleagues over the years that have broadened and deepened my understanding of EM phenomena, and continue to do so. Constructive comments from two reviewers and the Associate Editor helped improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Streich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Streich, R. Controlled-Source Electromagnetic Approaches for Hydrocarbon Exploration and Monitoring on Land. Surv Geophys 37, 47–80 (2016). https://doi.org/10.1007/s10712-015-9336-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-015-9336-0

Keywords

Navigation