Skip to main content
Log in

Lubrication performance of rapeseed oil-based nano-lubricants in parallel tubular channel angular pressing process

菜籽油纳米润滑剂在平行通道转角挤压过程中的润滑性能

  • Article
  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Due to the biological risks of using the conventional lubricants, the vegetable oils have been considered nowadays. Besides, to improve the tribological properties of the vegetable oils in various applications like metal forming processes, nanoparticles have been used as additives. This research evaluated the lubrication performance of the Al2O3 and TiO2 nanoparticles dispersed in rapeseed oil during the parallel tubular channel angular pressing (PTCAP) process. The experimental PTCAP tests have been fulfilled under three lubrication conditions and the comparison between the PTCAP processed tubes has been performed in terms of the maximum forming force, surface roughness, and microhardness. The experimental results indicate that adding the mentioned nanoparticles has caused at least a 50% reduction in the maximum deformation load. Moreover, a remarkable decrement in the surface roughness of the formed tubes has been obtained.

摘要

由于使用传统润滑剂存在生物风险, 植物油已成为人们关注的焦点。此外, 为了提高植物油在 金属成型工艺等各种应用中的摩擦性能, 纳米颗粒被用作添加剂。本文研究了平行通道转角挤压 (PTCAP) 过程中分散在菜籽油中的 Al2O3 和 TiO2 纳米颗粒的润滑性能。在三种润滑条件下进行了 PTCAP 实验, 并在最大成形力、表面粗糙度和显微硬度方面对 PTCAP 加工通道进行了比较。实验结 果表明, 加入上述纳米颗粒可使最大变形力至少降低 50%. 此外, 成型通道的表面粗糙度明显降低

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. JAHADI R, SEDIGHI M, JAHED H. ECAP effect on the micro-structure and mechanical properties of AM30 magnesium alloy [J]. Mater Sci EngA, 2014, 593: 178–184.

    Article  Google Scholar 

  2. WANG Bing-feng, SUN Jie-ying, ZOU Jin-dian, VINCENT S, LI Juan. Mechanical responses, texture and microstructural evolution of high purity aluminum deformed by equal channel angular pressing [J]. Journal of Central South University, 2015, 22(10): 3698–3704.

    Article  Google Scholar 

  3. MARAMI G, SAMAN S M, ALI M, S. Enhanced mechanical properties of pure aluminium: Experimental investigation of effects of different parameters [J]. Journal of Cental South University, 2018, 25: 561–569.

    Article  Google Scholar 

  4. RAHMATABADI D, HASHEMI R. Experimental evaluation of forming limit diagram and mechanical properties of nano/ultra-fine grained aluminum strips fabricated by accumulative roll bonding [J]. Int J Mater Res, 2017, 108(12): 1036–1044.

    Article  Google Scholar 

  5. RAHMATABADI D, TAYYEBI M, HASHEMI R. Fracture toughness investigation of A11050/Cu/MgAZ31ZB multi-layered composite produced by accumulative roll bonding process [J]. Mater Sci Eng A, 2018, 734: 427–436.

    Article  Google Scholar 

  6. ZHILYAEV A P, LANGDON T G Using high-pressure torsion for metal processing: Fundamentals and applications [J]. Prog Mater Sci, 2008, 53: 893–979.

    Article  Google Scholar 

  7. LEE H, KYUNG S, HO K, AN G, AHN B, KAWASAKI M, LANGDON T G. Evolution in hardness and texture of a ZK60A magnesium alloy processed by high-pressure torsion [J]. Mater Sci Eng A, 2015, 630: 90–98.

    Article  Google Scholar 

  8. FARAJI G, MASHHADI M M, KIM H S. Deformation behavior in tubular channel angular pressing (TCAP) using triangular and semicircular channels [J]. Mater Trans, 2012, 53(1): 8–12.

    Article  Google Scholar 

  9. MESBAH M, FARAJI G, BUSHROA A R. Characterization of nanostructured pure aluminum tubes produced by tubular channel angular pressing (TCAP) [J]. Mater Sci Eng A, 2014, 590: 289–294.

    Article  Google Scholar 

  10. HOSSEINI S H, ABRINIA K, FARAJI G Applicability of a modified backward extrusion process on commercially pure aluminum [J]. J Mater, 2015, 65: 521–528.

    Article  Google Scholar 

  11. FARAJI G, KIM H S. Review of principles and methods of severe plastic deformation for producing ultrafine-grained tubes [J]. Mater Sci Technol, 2017, 33(8): 905–923.

    Article  Google Scholar 

  12. JAVIDIKIA M, HASHEMI R. Analysis and simulation of parallel tubular channel angular pressing of Al 5083 tube [J]. Trans Indian Inst Met, 2017, 70: 2547–2553.

    Article  Google Scholar 

  13. TAVAKKOLI V, AFRASIAB M, FARAJI G, MASHHADI M M. Severe mechanical anisotropy of high-strength ultra fine grained Cu-Zn tubes processed by parallel tubular channel angular pressing (PTCAP) [J]. Mater Sci Eng A, 2015, 625: 50–55.

    Article  Google Scholar 

  14. JAVIDIKIA M, HASHEMI R. Mechanical anisotropy in ultra-fine grained aluminium tubes processed by parallel-tubular-channel angular pressing [J]. Mater Sci Technol, 2017, 33(18): 2265–2273.

    Article  Google Scholar 

  15. FARAJI G, MASHHADI M M, BUSHROA A R, BABAEI A. TEM analysis and determination of dislocation densities in nanostructured copper tube produced via parallel tubular channel angular pressing process [J]. Mater Sci Eng A, 2013, 563: 193–198.

    Article  Google Scholar 

  16. YANG T S. Investigation of the strain distribution with lubrication during the deep drawing process [J]. Tribiology Int, 2010, 43 (5, 6): 1104–1112.

    Article  Google Scholar 

  17. LAZZAROTTO L, DUBAR L, DUBOIS A, RAVASSARD P. A selection methodology for lubricating oils in cold metal forming processes [J]. Wear, 1998, 215: 1–9.

    Article  Google Scholar 

  18. RAO K P, XIE C L. A comparative study on the performance of boric acid with several conventional lubricants in metal forming processes [J]. Tribiology Int, 2006, 39: 663–668.

    Article  Google Scholar 

  19. KIM H, ALTAN T, YAN Q. Evaluation of stamping lubricants in forming advanced high strength steels (AHSS) using deep drawing and ironing tests [J]. J Mater Process Technol, 2009, 209: 4122–4133.

    Article  Google Scholar 

  20. TOMALA A, HERNANDEZ S, RIPOLL M R, BADISCH E, PRAKASH B. Tribological performance of some solid lubricants for hot forming through laboratory simulative tests [J]. Tribiology Int, 2014, 74: 164–173.

    Article  Google Scholar 

  21. KRISHNA P V, RAO D N. Performance evaluation of solid lubricants in terms of machining parameters in turning [J]. Int J Mach Tools Manuf, 2008, 48: 1131–1137.

    Article  Google Scholar 

  22. ALIMIRZALOO V, SHEYDAYIGURCHINQALEH S. Investigation of the effect of CuO and AL2O3 nanolubricants on the surface roughness in the forging process of aluminum alloy [J]. J Eng Tribol, 2017, 231(12): 1595–1604.

    Google Scholar 

  23. PENG D, CHEN C. Size effects of SiO2 nanoparticles as oil additives on tribology of lubricant [J]. Ind Lubr Tribol, 2010, 62(2): 111–120.

    Article  Google Scholar 

  24. HERNANDEZ BATTEZ A, GONZALEZ R, VIESCA J L, FERNANDEZ J E, MACHADO A, CHOU R, RIBA J. CuO, ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricants [J]. Wear, 2008, 265: 422–428.

    Article  Google Scholar 

  25. KHALILPOURAZARY S, MESHKAT S S. Investigation of the effects of alumina nanoparticles on spur gear surface roughness and hob tool wear in hobbing process [J]. Int J Adv Manuf Technol, 2014, 71: 1599–1610.

    Article  Google Scholar 

  26. ZHU Z, SUN J, NIU T, LIU N. Experimental research on tribological performance of water-based rolling [J]. J Nanoeng Nanosyst, 2014, 229(3): 104–109.

    Google Scholar 

  27. WANG B, SUN J, WU Y Lubricating performances of nano organic-molybdenum as additives in water-based liquid during cold rolling [J]. Adv Mater Res, 2011, 337: 550–555.

    Article  Google Scholar 

  28. XIE H M, JIANG B, HE J J, XIA X S, JIANG Z T, DAI J H, PAN F S. Effect of SiO2 nanoparticles as lubricating oil additives on the cold-rolling of AZ31 magnesium alloy sheet [J]. Mater Res Innov, 2015, 8917: 127–132.

    Article  Google Scholar 

  29. BAO Y, SUN J, KONG L. Effects of nano-SiO2 as water-based lubricant additive on surface qualities of strips after hot rolling [J]. Tribiology Int, 2017, 114: 257–263.

    Article  Google Scholar 

  30. ABE Y, YAMASHITA T, ABE Y, YAMASHITA T. Forward extrusion aluminium alloy billet using Engineering of ceramic particles fine ceramic particles costing models for kai capacity in industry trade-off and operational efficiency [J]. Procedia Manuf, 2018, 15: 240–248.

    Article  Google Scholar 

  31. ZAREH-DESARI B, ABASZADEH-YAKHFORVAZANI M, KHALILPOURAZARY S. The effect of nanoparticle additives on lubrication performance in deep drawing process: Evaluation of forming load, friction coefficient and surface quality [J]. Int J Precis Eng Manuf, 2015, 16(5): 929–936.

    Article  Google Scholar 

  32. GULZAR M, MAS JUKI H H, KALAM M A, VARMAN M, ZULKIFLI N W M, MUFTI R A, ZAHID R, YUNUS R. Dispersion stability and tribological characteristics of TiO2/SiO2 nanocomposite-enriched biobased lubricant [J]. Tribol Trans, 2017, 60(4): 670–680.

    Article  Google Scholar 

  33. SYAHRULLAIL S, ZUBIL B M, AZWADI C S N, RIDZUAN M J M. International journal of mechanical sciences experimental evaluation of palm oil as lubricant in cold forward extrusion process [J]. Int J Mech Sci, 2011, 53(7): 549–555.

    Article  Google Scholar 

  34. ZAREH-DESARI B, DAVOODI B. Assessing the lubrication performance of vegetable oil-based nanolubricants for environmentally conscious metal forming processes [J]. J Clean Prod, 2016, 135: 1198–1209.

    Article  Google Scholar 

  35. DIABB J, RODRIGUEZ C A, MAMIDIN, SANDOVAL J A, TAHA-TIJERINA J. Study of lubrication and wear in single point incremental sheet forming (SPIF) process using vegetable oil nanolubricants [J]. Wear, 2017, 376-377: 777–785.

    Article  Google Scholar 

  36. NI J, FENG G, MENG Z, HONG T, CHEN Y, ZHENG X. Reinforced lubrication of vegetable oils with graphene additive in tapping ADC 12 aluminum alloy [J]. Int J Adv Manuf Technol, 2017, 94 (11): 1031–1040.

    Google Scholar 

  37. ZHANG Y, LI C, JIA D, ZHANG D, ZHANG X. Experimental evaluation of M0S2 nanoparticles in jet MQL grinding with different types of vegetable oil as base oil [J]. J Clean Prod, 2015, 87: 930–940.

    Article  Google Scholar 

  38. INGOLE S, CHARANPAHARI A, KAKADE A, UMARE S S, BHATT D V, MENGHANI J. Tribological behavior of nano TiO2 as an additive in base oil [J]. Wear, 2013, 301 (1,2): 776–785.

    Article  Google Scholar 

  39. BAHRAMIAN A, RAEISSI K, HAKIMIZAD A. An investigation of the characteristics of Al2O3/TiO2 PEO nanocomposite coating [J]. Appl Surf Sci, 2015, 351: 13–26.

    Article  Google Scholar 

  40. ALI M K A, XIANJUN H, MAI L, QINGPING C, FIIFI R, BICHENG C. Improving the tribological characteristics of piston ring assembly in automotive engines using Al2O3 and TiO2 nanomaterials as nano-lubricant additives [J]. Tribiology Int, 2016, 103: 540–554.

    Article  Google Scholar 

  41. SYAHRULLAIL S, KAMITANI S, SHAKIRIN A. Performance of vegetable oil as lubricant in extreme pressure condition [J]. ProcediaEng, 2013, 68: 172–177.

    Article  Google Scholar 

  42. AHMADPOUR M, SIAVASHI M, DORANEHGARD M H. Numerical simulation of two-phase flow in fractured porous media using streamline simulation and IMPES methods and comparing results with a commercial software [J]. Journal of Central South University, 2016, 23: 2630–2637.

    Article  Google Scholar 

  43. LI Zhi-hui, ZHANG Yong-jie, ZHANG Yu-zhu. Effect of content of Al2O3 and MgO on crystallization of blast furnace slag during fiber formation [J]. Journal Central South University, 2018, 25: 2373–2379.

    Article  Google Scholar 

  44. MAO C, HUANG Y, ZHOU X. The tribological properties of nanofluid used in minimum quantity lubrication grinding [J]. Int J Adv Manuf Technol, 2014, 71: 1221–1228.

    Article  Google Scholar 

  45. GAO Tie-jun, LV Yang-jie, LIU Qing, WANG Zhong-jin. Effect of aluminum particle on properties of viscous medium during warm viscous pressure bulging [J]. Journal of Central South University, 2018, 25(9): 2085–2092.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramin Hashemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasaeian-Naeini, M., Hashemi, R. & Hosseini, A. Lubrication performance of rapeseed oil-based nano-lubricants in parallel tubular channel angular pressing process. J. Cent. South Univ. 26, 1042–1049 (2019). https://doi.org/10.1007/s11771-019-4069-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4069-8

Key words

关键词

Navigation